K.S. Rangasamy College of Technology (Autonomous)

Curriculum & Syllabi

for

M.Tech. Data Science (For the batch admitted in 2024 – 2025)

R2022

Accredited by NAAC with 'A++' grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

BOARD OF STUDIES BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology.

M.Tech - DATA SCIENCE

VISION

To emerge as an Information Technology knowledge hub by imparting quality education, promoting research and innovation.

MISSION

- To provide holistic education through curriculum update, inspired and experiential learning
- To mold the students as responsible professionals to compete with the emerging global challenges

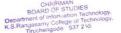
1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Core Competence: Graduates will demonstrate their technical skills and competency in various applications through the use of Data Science
- **PEO2:** Successful Career: Graduates will establish their knowledge by adopting Data Science technologies to solve the real world problems
- **PEO3:** Ethics and life-long learning: Graduates will continue to advance in their career through life-long learning with a social and ethical concern

2. PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems
- **PO2:** An ability to write and present a substantial technical report/document
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
- **PO4:** Create and develop computer programmes and computer-based systems in the fields of security, web design, and artificial intelligence
- **PO5:** Demonstrate the impact of the professional engineering solutions in societal and environmental contexts for sustainable development.
- **PO6:** Recognize the need of autonomous, lifelong learning in the context of technological change, and possess the necessary skills and readiness.


3. PEO / PO MAPPING

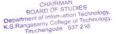
The M. Tech. Data Science Programme Outcomes leading to the achievement of the Programme Educational Objectives are summarized in the following table.

Programme Educational		Programme Outcomes										
Objectives	PO1	PO2	PO3	PO4	PO5	PO6						
PEO 1	3	3	2	3	2	3						
PEO 2	2	3	2	3	3	2						
PEO 3	3	2	3	2	2	3						

Contributions: 1- low, 2- medium, 3- high

YEAR	SEMESTER	COURSE NAME	PO1	PO2	PO3	PO4	PO5	PO6
		Mathematics for Data Science	2.4	2.5	0.8	2.8	1.2	2.5
		Research Methodology and IPR	3	2.8	3	2.5	2.5	2.5
		Data Analytics using Python	3	2.8	2.6	3	2.5	3
		Advanced Data Management	3	2.6	3.6	2.6	2.6	2.6
		Machine Learning Techniques	2.8	2	2.5	2.6	2.5	2.6
		Professional Elective I						
		Audit Course – I*						
		Machine Learning Laboratory	3	2.5	2.6	2.8	2.6	2.6
Year I		Exploratory Data Analysis	3	2.6	2.2	2.6	3	2.4
		Advanced Machine Learning	2.8	2.8	2.8	2.4	2.8	2.8
		Business Analytics	2	2	3	2.4	2.2	2.4
		Data Security and Privacy	2	2	3	2.8	2.8	2.6
	П	Professional Elective II						
		Professional Elective III						
		Audit Course – II*						
		Term Paper and Seminar						
		Exploratory Data Analysis Laboratory	3	2.6	2.2	2.6	2.6	2.8
Year II		Deep Learning	2	2	3	3	2	2
	m	Professional Elective IV						
		Professional Elective V						
		Professional Elective VI						

MAPPING – M.Tech – DATA SCIENCE


K.S. RANGASAMY COLLEGE OF TECHNOLOGY

Credit Distribution for M.Tech (Data Science) Programme – 2024 - 2025 Batch

			Credi	ts per Sem	ester		
S. No.	Category	I	II	111	IV	Total Credits	Percentage %
1.	RM	03	-	-	-	03	04.17
2.	PC	15	14	04	-	33	45.83
3.	PE	03	06	09	-	18	25.00
4.	CG	-	-	06	12	18	25.00
5.	AC	AC I	AC II	-	-	-	-
	Total	21	20	19	12	72	100

- PC PROFESSIONAL CORE
- PE PROFESSIONAL ELECTIVE
- **CG CAREER GUIDANCE COURSES**
- AC AUDIT COURSES

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637 215 (An Autonomous Institution affiliated to Anna University)

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С	Prerequisite
1.	60 PDS 101	Mathematics for Data Science	PC	5	3	1	0	4	Basic Knowledge of probability and Statistics, Data Mining
2.		Research Methodology and IPR	PC	3	3	0	0	3	Nil
3.		Data Analytics using Python	PC	3	3	0	0	3	Basic Knowledge of Higher Secondary Mathematics
4.	60 PDS 103	Advanced Data Management	PC	3	3	0	0	3	Basic Knowledge of Database Management System, Big Data
5.	60 PDS 104	Machine Learning Techniques	PC	3	3	0	0	3	Basic Knowledge of Data Mining and its applications
6.	60 PDS 1P1	Machine Learning Laboratory	PC	4	0	0	4	2	Basic Knowledge of probability and Statistics, Data Mining
7.	60 PDS 201	Exploratory Data Analysis	PC	3	3	0	0	3	Basic Knowledge of Data mining and machine learning techniques
8.	60 PDS 202	Advanced Machine Learning	PC	3	3	0	0	3	Basic Knowledge of Machine Learning
9.	60 PDS 203	Business Analytics	PC	3	3	0	0	3	Data Mining
10.	60 PDS 204	Data Security and Privacy	PC	3	3	0	0	3	Basic Knowledge of Cryptography and Network Security, Data Management
11.	60 PDS 2P2	Exploratory Data Analysis Laboratory	PC	4	0	0	4	2	Data Mining, Machine Learning
12.	60 PDS 301	Deep Learning	PC	5	3	1	0	4	Basic Knowledge of Probability & Statistics, Artificial Intelligence and Machine Learning

PROFESSIONAL CORE (PC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С	Prerequisite
1.	60 PDS E11	Artificial Intelligence and Internet of Things	PE	3	3	0	0	3	Basic Knowledge of Artificial Intelligence, Big Data
2	60 PDS E12	Soft computing and its Applications	PE	3	3	0	0	3	Basic Knowledge of Neural Network, Deep Learning
3.	60 PDS E13	Data Mining and Applications	PE	3	3	0	0	3	Basic Knowledge of Neural Network, Deep Learning
4.	60 PDS E14	Distributed Systems	PE	3	3	0	0	3	Basic Knowledge of Operating Systems, Computer Networks
5.	60 PDS E15	Software Engineering for Data Science	PE	3	3	0	0	3	Basic Knowledge of Software Engineering
• • •	Course	SEMESTER I	I, ELECTIV	E II Contact		_	_		
S.No.	Code	Course Title	Category	Periods	L	Т	Р	С	Prerequisite
1.	60 PDS E21	Advanced Algorithms and Optimization	PE	3	3	0	0	3	Data Structure, Design and Analysis of Algorithms
2.	60 PDS E22	Intelligent Database Systems	PE	3	3	0	0	3	Database Systems, SQL, XML, Data Science
3.		Natural Language Processing and Text Mining	PE	3	3	0	0	3	Data Mining, Machine Learning
4.		Time Series Analysis and Forecasting	PE	3	3	0	0	3	Basic Knowledge of Higher Secondary Mathematics, Python
5.		Predictive Modeling and Data Analytics	PE	3	3	0	0	3	Data Mining, Machine Learning

PROFESSIONAL ELECTIVES (PE) SEMESTER I, ELECTIVE I

R.P-M

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 245

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	с	Prerequisite
1.	60 PDS E31	Reinforcement Learning	PE	3	3	0	0	3	Data Mining, Machine Learning
2.	60 PDS E32	Recommender Systems	PE	3	3	0	0	3	Basic Knowledge of Higher Secondary Mathematics, Binary operations
3.	60 PDS E33	Big Data Security	PE	3	3	0	0	3	Basic Knowledge of Cryptography and Network security, Big Data &Mathematical Logic
4.	60 PDS E34	Blockchain in Al and IoT	PE	3	3	0	0	3	Basic Knowledge of Cryptography and Network Security
5.	60 PDS E35	Cognitive Science and Analytics	PE	3	3	0	0	3	Basic Knowledge of Artificial Intelligence

SEMESTER II, ELECTIVE III

SEMESTER III, ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С	Prerequisite
1.	60 PDS E41	Pattern Recognition	PE	3	3	0	0		Data Mining, Machine Learning
2.	60 PDS E42	IoT Architecture and Computing	PE	3	3	0	0	3	Embedded Systems
3.	60 PDS E43	Advanced Web Analytics	PE	3	3	0	0	3	Web Technology, Data Mining, Machine Learning
4.	60 PDS E44	Stream Processing and Analytics	PE	3	3	0	0		Data Mining, Machine Learning
5.	60 PDS E45	Ethics for Data Science	PE	3	3	0	0		Basic Knowledge of Ethics, Data Science

CHAIRMAN BOARD OF STUDIES Oepartment of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2/5

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С	Prerequisite
1.	60 PDS E51	Predictive Analytics for Internet of Things	PE	3	3	0	0	3	Internet of Things, Data Mining, Machine Learning
2.	60 PDS E52	Data Governance and Quality	PE	3	3	0	0	3	Data Management
3.	60 PDS E53	Web Analytics and Development	PE	3	3	0	0	3	Web Technology, Data Mining, Machine Learning
4.	60 PDS E54	Next Generation Databases	PE	3	3	0	0	з	Basic Knowledge of Structured and unstructured data
5.	60 PDS E55	GPU Computing	PE	3	3	0	0	3	Programming and Data Structure, Digital Logic, Computer architecture

SEMESTER III, ELECTIVE V

SEMESTER III, ELECTIVE VI

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С	Prerequisite
1.	60 PDS E61	Computer Vision	PE	3	3	0	0	3	Deep Learning, Data Mining, Machine Learning
2.	60 PDS E62	Theoretical and Computational Neuroscience	PE	3	3	0	0	3	Data Mining, Machine Learning
3.	60 PDS E63	Fog Computing	PE	3	3	0	0	3	Data Mining, Machine Learning
4.	60 PDS E64	Healthcare Data Analytics	PE	3	3	0	0	3	Data Mining, Machine Learning
5.	60 PDS E65	Real Time Systems	PE	3	3	0	0	3	Data Mining, Machine Learning

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2'5

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С	Prerequisite
1	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0	-
2.	60 PAC 002	Disaster Management	AC	2	2	0	0	0	-
3.	60 PAC 003	Constitution of India	AC	2	2	0	0	0	-

AUDIT COURSES SEMESTER (I / II) (AC)

CAREER GUIDANCE COURSES (CG)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С	Prerequisite
1.	60 PDS 2P1	Term Paper and Seminar	CG	2	0	0	2	0	Domain Knowledge in Thrust Areas
2.	60 PDS 3P1	Project Work Phase - I	CG	12	0	0	12	6	Term Paper and Seminar
3.	60 PDS 4P1	Project Work Phase - II	CG	24	0	0	24	12	Term Paper and Seminar

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University) COURSES OF STUDY

(For the candidates admitted in 2024-2025)

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С
	·	THEORY						
1.	60 PDS 101	Mathematics for Data Science	PC	5	3	1	0	4
2.	60 PED 001/ 60 PDB E26	Research Methodology and IPR	PC	3	3	0	0	3
3.	60 PDS 102	Data Analytics using Python	PC	3	3	0	0	3
4.	60 PDS 103	Advanced Data Management	PC	3	3	0	0	3
5.	60 PDS 104	Machine Learning Techniques	PC	3	3	0	0	3
6.	60 PDS E1*	Professional Elective I	PE	3	3	0	0	3
7.	60 PAC 001	English for Research Paper Writing	AC	2	0	0	2	0
		PRACTICALS	•			•	•	
8.	60 PDS 1P1	Machine Learning Laboratory	PC	4	0	0	4	2
			TOTAL	26	18	1	6	21

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Timichengode 637 215

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С
1.	60 PDS 201	Exploratory Data Analysis	PC	3	3	0	0	3
2.	60 PDS 202	Advanced Machine Learning	PC	3	3	0	0	3
3.	60 PDS 203	Business Analytics	PC	3	3	0	0	3
4.	60 PDS 204	Data Security and Privacy	PC	3	3	0	0	3
5.	60 PDS E2*	Professional Elective II	PE	3	3	0	0	3
6.	60 PDS E3*	Professional Elective III	PE	3	3	0	0	3
7.	60 PAC 002	Disaster Management	AC	2	2	0	0	0
		PRACTICALS						
8.	60 PDS 2P1	Term Paper and Seminar	CG	2	0	0	2	0
9.	60 PDS 2P2	Exploratory Data Analysis Laboratory	PC	4	0	0	4	2
			TOTAL	26	20	0	06	20

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	60 PDS 301	Deep Learning	PC	5	3	1	0	4
2.	60 PDS E4*	Professional Elective IV	PE	3	3	0	0	3
3.	60 PDS E5*	Professional Elective V	PE	3	3	0	0	3
4.	60 PDS E6*	Professional Elective VI	PE	3	3	0	0	3
		PRACTICALS						
5.	60 PDS 3P1	Project Work Phase - I	CG	12	0	0	12	6
			TOTAL	26	12	01	12	19

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
		PRACTICALS						
1.	60 PDS 4P1	Project Work Phase - II	CG	24	0	0	24	12
			TOTAL	24	0	0	24	12

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE: 72

- PC : Professional Core
- PE : Professional Elective
- CG : Career Guidance Courses
- AC : Audit Courses
- L : Lecture
- T : Tutorial
- P : Practical

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE-637215

(An Autonomous Institution affiliated to Anna University)

M. Tech. Degree Programme

R.P-

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2024 - 2025)

FIRST SEMESTER

S.No.	Course Code	Name of the	Duration of	Weightage of Marks			Minimum Marks for Pass in End Semester Exam		
3.110.		Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total	
			THE	EORY					
1	60 PDS 101	Mathematics for Data Science	2	40	60	100	45	100	
2	60 PED 001 / 60 PDB E26	Research Methodology and IPR	2	40	60	100	45	100	
3	60 PDS 102	Data Analytics using Python	2	40	60	100	45	100	
4	60 PDS 103	Advanced Data Management	2	40	60	100	45	100	
5	60 PDS 104	Machine Learning Techniques	2	40	60	100	45	100	
6.	60 PDS E1*	Professional Elective I	2	40	60	100	45	100	
7.	60 PAC 001	English for Research Paper Writing	2	100	-	100	-	100	
			PRAC	CTICAL					
8.		Machine Learning Laboratory	2	60	40	100	45	100	

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination and 40 marks for practical End Semester Examination.

CHAIRMAN BOARD ∂F STUDIES Department of Information Technology. C.S.Rangasamy College of Technology.

		Category	L	Т	Ρ	Credit
60 PDS 101	Mathematics for Data Science	PC	3	1	0	4

- To introduce the basics of data science
- To enrich the skills in linear algebra models
- To understand the concepts of fitting of curves and regression
- To expose the knowledge optimization techniques in advanced fields.
- To impart the knowledge in data science methods.

Prerequisite

Basic Knowledge of probability and Statistics, Data Mining

Course Outcomes

On the successful completion of the course, students will be able to

C01	Analyze the concepts of linear algebra in data science problems.	Remember
CO2	Apply the properties, eigen values and eigen vectors based on linear algebra.	Apply
CO3	Solve the real time applications using regression analysis and estimation.	Apply
CO4	Compare the optimization techniques to solve the machine learning	Apply
CO5	Apply the data science concepts as advanced models.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	2	2	2	2		
CO2	3	2	3	3	1	2		
CO3	3	2	3	3	1	2		
CO4	3	3	2	3	1	2		
CO5	3	3	2	3	1	2		
- Strong; 2-Medium; 1-Some								

Accessment Dettern

Assessment Patte			
Bloom's Category		Assessment Tests (Marks)	End Sem Examination (Marks)
	1	2	
Remember(Re)	00	00	00
Knowledge (Kn)	20	20	20
Apply (Ap)	40	40	80
Analyse (An)	00	00	00
Evaluate(Ev)	00	00	00
Create (Cr)	00	00	00

		K.S.Ranga	samv Colle	ge of Technolo	av – Autono	mous R202	2	
				Mathematics for			-	
				M. Tech Data				
Semester	-	Hours / Week		Total hrs	Credit		Maximum Marks	
	L		P		C	CA	ES	Total
 Region of	3 Data Scien		0	60	4	40	60	100
Introductio	n, typology	of problems, im	•	[:] linear algebra, s ng data science p		optimization	from a data	[9]
Matrix fac	nd their pr torizations	(The Cholesky	decompos	ices, rank, nullit ition, QR factori notion of hyper p	zation, Sing	ular value d	-	[9]
Curve fitti	ng by meth - Least squ		quares - Co	orrelation Prope on coefficients -				[9]
	ined optimiz d optimizat		•	ciency conditions luction to non-gr	•	-		[9]
	nce Methoo ression as a		ction appro	ximation problem	n, linear class	sification prol	olems	[9]
					То	tal Hours: 4	5+15(Tutorial)	60
Text book	()							
		-		ations', 5 th Editior				
	•	her Engineering	g Mathemati	cs', 43 rd Edition,	Khanna Pub	lishers, Delhi	, 2014.	
Reference								
2 Benda	at, J. S. an	d A. G. Pierso		ⁿ Edition, Welles Data: Analysis				on, John
3 Montg	& Sons, 20 omery, D. (s, 2011.		inger, 'Appli	ied Statistics and	l Probability	for Engineers	s', 5 th Edition, Jo	hn Wiley
		Rachel Schutt.	'Doing Data	a Science', 4 th Ec	lition, O'Reil	ly Media, Fou	urth Edition, 201	6.
,			5		;		, -	

S.No.	Торіс	No. of Hours
1	Basics of Data Science	
1.1	Introduction	1
1.2	Typology of problems	1
1.3	Importance of linear algebra	1
1.4	Tutorial	2
1.5	Statistics and optimization from a data science perspective	1
1.6	Structured thinking for solving data science problems	2
1.7	Tutorial	2
2	Linear Algebra	
2.1	Matrices and their properties (determinants, traces, rank, nullity, etc.),	2
2.2	Eigenvalues and eigenvectors	2
2.3	Matrix factorizations - The Cholesky decomposition	1
2.4	QR factorization	1
2.5	Singular value decomposition	1
2.6	Inner products	1
2.7	Distance measures, projections	1
2.8	Tutorial	2
2.9	Notion of hyper planes, Half planes	1
2.10	Tutorial	2
3	Regression Analysis and Estimation	
3.1	Curve fitting by method of least squares	2
3.2	Correlation, Properties of correlation coefficient	2
3.3	Linear regression	1
3.4	Tutorial	
3.5	Least square estimation of regression coefficients - Regression lines	1
3.6	Maximum Likelihood Estimation	1
3.7	Tutorial	2
4	Optimization	
4.1	Unconstrained optimization	2
4.2	Necessary and sufficiency conditions for optima	1
4.3	Gradient descent methods	1
4.4	Constrained optimization	2
4.5	KKT conditions	2
4.6	Tutorial	2
4.7	Introduction to non-gradient techniques	1
4.8	Introduction to least squares optimization	1
4.9	Tutorial	2
5	Data Science Methods	
5.1	Linear regression as an exemplar function approximation problem	3
5.2	Tutorial	2
5.3	Linear classification problems	4
5.4	Tutorial	2
	Total 45+15(Tutorial)	60

Course Contents and Lecture Schedule

Dr. S. Muthukumar (muthukumar@ksrct.ac.in)

UHAIRMAN BOARD OF STUD Department of Information K.S.Rangasamy College of Tiruchengode

60 PED 001 /	Posoarch Mothodology and IPP	Category	L	Т	Ρ	Credit
60 PDB E26	Research Methodology and IPR	PC	3	0	0	3

- To understand the research process and design.
- To gain the knowledge about sources and collection of research data.
- To understand the procedure of data analysis and preparation of reports.
- To gain the knowledge on intellectual property rights.
- To enlighten the system of patents and benefits

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

C01	To understand the research process and design.	Apply
CO2	To gain the knowledge about sources and collection of research data	Apply
CO3	To understand the procedure of data analysis and preparation of reports.	Apply
CO4	To gain the knowledge on intellectual property rights.	Apply
CO5	To enlighten the system of patents and benefits	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	2	2	2		
CO2	3	3	2	2	2	2		
CO3	3	3	2	2	2	2		
CO4	3	3	2	2	2	2		
CO5	3	3	2	2	2	2		
3- Strong; 2-Medium; 1-Some								

Assessment Pattern

Bloom's Category	Continuous Assess	End Semester	
	1	2	Examination (Marks)
Remember(Re)	10	10	30
Understand(Un)	20	20	30
Apply(Ap)	10	10	30
Analyse(An)	20	20	10
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

			asaniy Co	llege of Techno	ology – Aut	onomous R2	2022			
			01 / 60 PDE	3 E26 - Resear	ch Methodo					
				mmon to all Br						
Semeste	er l	lours/Week		Total hrs	Credit		Maximum Marks			
	L	T	P	C CA ES I						
	3	0	0	45	3	40	60	100)	
research c Right Med	of research question, Qua lium and Jour	litative rese nal for publi	arch, Obse	Use of Second rvation studies, inslation of Rese	Experiment				[9]	
Measurem Preparing,	, Exploring, ex	rement Sca kamining an		onnaires and In g.	struments,	Sampling and	d methods. Da	ata -	[9]	
Overview and finding		e Analysis,		s testing and Me sentation. Chec					[9]	
Intellectua developme establishm	ent process,	The conc Trade secre of Property	ts, utility Mo /, Commor	e, Evolution ar odels, IPR & Bi rules of IPR) in IPR mainter	o diversity, I practices,	Role of WIPC	and WTO in	IPR	[9]	
Deterte					lance.					
Types of	patent applie	cation, proc	of patent, (ess E-fillin	Concept, featur g, Examination of related pate	es of patent, of patent,	Grant of pa	atent, Revoca	tion,	[9]	
Patents – Types of Equitable	patent applie	cation, proc	of patent, (ess E-fillin	Concept, featur g, Examination	es of patent, of patent,	Grant of pa	atent, Revoca istration of pa	tion, atent	[9] 45	
Patents – Types of Equitable agents.	patent applic Assignments	cation, proc	of patent, (ess E-fillin	Concept, featur g, Examination	es of patent, of patent,	Grant of pa	atent, Revoca	tion, atent		
Patents – Types of Equitable agents. Text Bool	patent applic Assignments k(s):	cation, proc , Licences,	of patent, (ess E-fillin Licensing	Concept, featur g, Examination	es of paten of patent, nts, patent	Grant of pa agents, Regi	atent, Revoca istration of pa	tion, atent		
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa	patent applic Assignments k(s): I. Bainbridge er Donald R, S ation, 11e (20	cation, proc , Licences, , "Intellectua Schindler Pa	of patent, (ess E-fillin Licensing l Property",	Concept, featur g, Examination of related pate	es of patent of patent, nts, patent Edition, 2012	Grant of pa agents, Regi	atent, Revoca istration of pa Total Ho	tion, atent ours	45	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference	k(s): I. Bainbridge er Donald R, S ation, 11e (20 e(s):	cation, proc , Licences, , "Intellectua Schindler Pa 12).	of patent, (ess E-fillin Licensing Il Property", amela S and	Concept, featur g, Examination of related pate Longman, 9th Sharma JK, "E	es of patent of patent, nts, patent Edition, 2012	Grant of pa agents, Regi 2. search Metho	Total Ho ds", Tata McG	tion, atent ours Graw H	45	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference	k(s): I. Bainbridge er Donald R, S ation, 11e (20 e(s):	cation, proc , Licences, , "Intellectua Schindler Pa 12).	of patent, (ess E-fillin Licensing Il Property", amela S and	Concept, featur g, Examination of related pate Longman, 9th	es of patent of patent, nts, patent Edition, 2012	Grant of pa agents, Regi 2. search Metho	Total Ho ds", Tata McG	tion, atent ours Graw H	45	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference 1. Chawl 2. Cathe Press	k(s): I. Bainbridge ation, 11e (20) e(s): Ia H S., "Introd rine J. Hollar , 2007	cation, proc , Licences, , "Intellectua Schindler Pa 12). duction to In nd, "Intellect	of patent, (ess E-fillin Licensing Il Property", amela S and Itellectual P ual propert	Concept, featur g, Examination of related pate Longman, 9th I Sharma JK, "E roperty Rights", y: Patents, Trac	es of patent of patent, nts, patent Edition, 2012 Business Res CBS PUB & demarks, Co	Grant of pa agents, Regi 2. search Metho & DIST PVT L opyrights, Tra	Total Ho ds", Tata McG imited, INDIA,	tion, atent ours Graw H , 2019 Entrep	45 1111	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference 1. Chawl 2. Cathe Press 3. David	k(s): I. Bainbridge er Donald R, S ation, 11e (20) e(s): Ia H S., "Intro- erine J. Hollar , 2007 Hunt, Long N	cation, proc , Licences, , "Intellectua Schindler Pa 12). duction to In nd, "Intellect	of patent, (ess E-fillin Licensing I Property", amela S and itellectual P ual propert	Concept, featur g, Examination of related pate Longman, 9th d Sharma JK, "E roperty Rights", y: Patents, Tra-	es of patent of patent, nts, patent Edition, 2012 Business Res CBS PUB & demarks, Co	Grant of pa agents, Regi 2. search Metho & DIST PVT L opyrights, Tra & techniques	Total Ho ds", Tata McG imited, INDIA, ade Secrets", s", Wiley, 2007	tion, atent ours Graw H , 2019 Entrep	45 Hill	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference 1. Chawl 2. Cathe Press 3. David 4. Arun P	k(s): I. Bainbridge ation, 11e (20) e(s): Ia H S., "Introd rine J. Hollar , 2007 Hunt, Long N K. Narasani, , 2010.	cation, proc , Licences, , "Intellectua Schindler Pa 12). duction to Ir nd, "Intellect Iguyen, Mat Kankanala	of patent, (ess E-fillin Licensing Il Property", amela S and itellectual P ual propert thew Rodge K.C., Radh	Concept, featur g, Examination of related pate Longman, 9th d Sharma JK, "E roperty Rights", y: Patents, Trac ers, "Patent sea akrishnan V., "	es of patent of patent, nts, patent Edition, 2012 Business Res CBS PUB & CBS PUB & demarks, Co rching: tools ndian Pater	Grant of pa agents, Regi 2. search Metho & DIST PVT L opyrights, Tra & techniques at Law and P	Total Ho Total Ho ds", Tata McG imited, INDIA, ade Secrets", s", Wiley, 2007 Practice", Oxfo	tion, atent ours Graw H , 2019 Entrep rd Un	45 Hill D. Dreneur	
Patents – Types of Equitable agents. Text Bool 1. David 2. Coope Educa Reference 1. Chawl 2. Cathe Press 3. David 4. Arun P	k(s): I. Bainbridge er Donald R, S ation, 11e (20) e(s): la H S., "Intro- rine J. Hollar , 2007 Hunt, Long N K. Narasani, , 2010. rd Stim, "Pate	cation, proc , Licences, , "Intellectua Schindler Pa 12). duction to Ir nd, "Intellect Iguyen, Mat Kankanala	of patent, (ess E-fillin Licensing Il Property", amela S and itellectual P ual propert thew Rodge K.C., Radh	Concept, featur g, Examination of related pate Longman, 9th d Sharma JK, "E roperty Rights", y: Patents, Tra-	es of patent of patent, nts, patent Edition, 2012 Business Res CBS PUB & CBS PUB & demarks, Co rching: tools ndian Pater	Grant of pa agents, Regi 2. search Metho & DIST PVT L opyrights, Tra & techniques at Law and P	Total Ho Total Ho ds", Tata McG imited, INDIA, ade Secrets", s", Wiley, 2007 Practice", Oxfo	tion, atent ours Graw H , 2019 Entrep rd Un	45 Hill Dreneur	

CHAIRMAN BOARD OF STUDIES Department of information Tec K.S.Rangasamy College of Tec Tiruchengode 637 2 %

Course	Content and Lecture Schedule	
S.No.	Topics	No. of hours
1.0	Research Design	·
1.1	Overview of research process and design	1
1.2	Use of Secondary and exploratory data to answer the research question	2
1.3	Qualitative research	1
1.4	Observation studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and methods	2
2.4	Data - Preparing, Exploring, examining and displaying	3
3.0	Data Analysis and Reporting	
3.1	Overview of Multivariate analysis	1
3.2	Hypotheses testing and Measures of Association	2
3.3	Presenting Insights	1
3.4	Findings using written reports and oral presentation	2
3.5	Checks for Plagiarism	1
3.6	Falsification	1
3.7	Fabrication, and Misrepresentation	1
4.0	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and development of concept of IPR, IPR development process	2
4.3	Trade secrets, utility Models, IPR & Bio diversity	2
4.4	Role of WIPO and WTO in IPR establishments	1
4.5	Right of Property, Common rules of IPR practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR	
	maintenance	2
5.0	Patents	
5.1	Patents – objectives and benefits of patent, Concept, features of patent	2
5.2	Inventive step, Specification, Types of patent application	2
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of related patents	2
5.6	Patent agents, Registration of patent agents	1

Course Designer Dr.A.Murugesan – <u>murugesana@ksrct.ac.in</u>

60 PDS 102	Data Analytics using Bythen	Category	L	Т	Р	Credit
00 FD3 102	Data Analytics using Python	PC	3	0	0	3

- To learn basic and advanced features in NumPy (Numerical Python)
- To create informative visualization with matplotlib
- To apply the pandas group by facility to slice, dice and summarize datasets
- To provide an in-depth knowledge of the various libraries and packages required to perform data analysis, data visualization, web scraping and machine learning using python
- To learn how to solve real-world

Prerequisite

Basic knowledge of Higher Secondary Mathematics, Python.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Analyze the roles and stages of data science projects	Analyze
CO2	Apply the data structures provided by numpy library for arrays and vectorized computation	Apply
CO3	Analyse the data structures provided by pandas library for data analysis	Analyse
CO4	Perform data wrangling, cleaning and transformation using python and use matplot lib for plotting and visualizing the datasets	Apply
CO5	Demonstrate data aggregation and time series analysis using python programming Language	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	2	3
CO3	3	3	2	3	2	3
CO4	3	3	3	3	2	3
CO5	3	2	2	3	2	3
	1	3-Stron	g; 2-Medium; 1-	Some	1	1

Assessment Pattern					
Bloom's Category	Continuous Ass (Mai		End Sem Examination (Mark		
	1	2			
Remember(Re)	30	30	30		
Understand (Kn)	10	10	20		
Apply (Ap)	30	30	40		
Analyse (An)	00	00	00		
Evaluate(Ev)	00	00	00		
Create (Cr)	00	00	00		

BOARD OF STUDIES BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology.

		K.S.Ran	gasamy Co	llege of Techn	ology – A	utonomous	s R2022		
		60		Data Analytics		/thon			
				M. Tech Data			Maximum M		
Seme	ster	Hours / Wee	<u>к</u> Р	Total hrs	Credit C	СА	Maximum Ma ES	1	Total
	3	Т 0	P0	45	3	40	60		100
Introdu	_	Ū	0	40	0	-10	00		
relationa validatio Numpy The Nu	Basics: Arrays	exploring dat Multidimensi	ta – manag onal Array	ging data – cl	eaning an	d sampling	for modeling	g and	[9]
Vectoria File Inp Introduc Descrip	ns – Data Process zed Computatior ut and Output wi ction to pandas tive Statistics – Ha	h and Panda th Arrays – Data Struct andling Miss	IS Linear Alge tures – Es ing Data – I	sential Functio	onality – exing – Ot	Summarizing her pandas	g and Comp Topics	puting	[9]
Reading – Intera Merging Databas		a in Text For bases Data haping and I	mat – Bina Wrangling:	ry Data Formats Clean, Trans	s – Interac form, Mer	ting with HT ge, Reshap	ML and Web	APIs g and	[9]
A Brief	g and Visualizatio matplot lib API ake Crisis Data –	Primer – I	-		das – Plo	otting Maps	: Visualizing	Haiti	[9]
Group E and Cro Ranges and Fre	ggregation and G By Mechanics – D bss-Tabulation TIN , Frequencies, an equency Convers / Usage Notes	Data Aggrega ME SERIES: d Shifting –	ation – Grou Date and T Time Zone	up-wise Operati ïme Data Type: Handling – Per	s and Tool iods and F	ls – Time Se Period Arithm	eries Basics – netic – Resan	- Date npling	[9]
							Total H	lours	45
Text bo	ook(s):								L
	es McKinney, 'Py	thon for Data	a Analysis'.	O'Reilly Media.	2012				
	ebastian Raschka			-					
Referer				5. 1.	-				
1. Fa	abio Nelli , 'Pythor press, 2015 es McKinney, 'Py			-					
^{2.} 20	ike Vanderplas,		-		-				-
Av	edia,2016 /inashNavlani, 'Py nd model building		•		ection, dat	ta processin	g, wrangling,	visua	lization,

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangssamy College of Technology. Tiruchengode 637 215

Cou	Irse Contents and Lecture Schedule	
S. No.	Торіс	No. of Hours
1	Introduction	
1.1	Data science process	1
1.2	roles, stages in data science project	1
1.3	working with data from files	1
1.4	working with relational databases	1
1.5	exploring data – managing data	1
1.6	cleaning and sampling for modeling	1
1.7	Validation.	1
2	Numpy Basics: Arrays, Vectorized Computation and Pandas	
2.1	The NumPy ndarray: A Multidimensional Array Object	1
2.2	Universal Functions: Fast Elementwise Array Functions	1
2.3	Data Processing Using Arrays	1
2.4	File Input and Output with Arrays, Linear Algebra	1
2.5	Random Number Generation, Random Walks.	1
2.6	Introduction to pandas Data Structures, Essential Functionality	2
2.7	Summarizing and Computing Descriptive Statistics	1
2.8	Handling Missing Data	1
2.9	Hierarchical Indexing, Other pandas Topics	
3	Data Loading, Storage, and File Formats & Data Wrangling: Clean, Transform, Merge, Reshape	
3.1	Reading and Writing Data in Text Format, Binary Data Formats	1
3.2	Interacting with HTML and Web APIs	1
3.3	Interacting with Databases DATA WRANGLING: CLEAN, TRANSFORM, MERGE, RESHAPE	2
3.4	Combining and Merging Data Sets	1
3.5	Reshaping and Pivoting	1
3.6	Data Transformation	1
3.7	String Manipulation	1
3.8	USDA Food Database	1
4	Plotting and Visualization	
4.1	A Brief matplot lib API Primer	1
4.2	Plotting Functions in pandas	2
4.3	Plotting Maps	1
4.4	Plotting Maps: Visualizing Haiti Earthquake Crisis Data	2
4.5	Python Visualization Tool Ecosystem	2
5	Data Aggregation and Group Operations & Time Series	
5.1	GroupBy Mechanics	1
5.2	Data Aggregation	1
5.3	Group-wise Operations and Transformations	1
5.4	Pivot Tables and Cross-Tabulation TIME SERIES	1
5.5	Date and Time Data Types and Tools	1
5.6	Time Series Basics , Date Ranges, Frequencies, and Shifting	1
5.7	Time Zone Handling , Periods and Period Arithmetic	1
5.8	Resampling and Frequency Conversion, Time Series Plotting	1
5.9	Moving Window Functions, Performance and Memory Usage Notes	1
	Total	45
	Course Designers	

Course Designers Ms.S.Geetha – (geetha@ksrct.ac.in)

60 PDS 103	Advanced Data Management	Category	L	Т	Р	Credit
	Advanced Data Management	PC	3	0	0	3

- To study basic SQL queries •
- To design database using data models and normalization •
- To study concurrency control techniques and recovery concept •
- To understand the basic concepts of NoSQL database •
- To learn various data analysis techniques in the internet Context •

Prerequisite

Basic knowledge of Database Management System, Big Data

Course Outcomes

On t	he successful completion of the course, students will be able to					
CO1	Describe the need for managing/storing data and identify the value and relative importance					
001	of data management	Understand				
CO2	Describe fundamentals of Data Management techniques suitable for Enterprise Applications	Apply				
CO3	Analyse the different concurrency control protocols in a transaction	Analyse				
CO4	Apply Data Management Solution for Internet Applications	Apply				
CO5	Describe various data analysis techniques in the internet Context	Analyze				
Ма	Mapping with Programme Outcomes					

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	2	3
CO2	3	3	2	2	3	2
CO3	3	3	2	2	3	3
CO4	3	2	3	3	2	2
CO5	3	3	2	3	3	3
3-Strona: 2-Me	dium: 1-Some	-	•	•	•	•

Strong; 2-Medium; 1-Some

Assessment Pattern			
Bloom's Category	Continuous Ass (Mai		End Sem Examination (Marks)
	1	2	
Remember (Re)	30	00	30
Understand(Un)	00	00	00
Apply (Ap)	30	30	60
Analyze (An)	00	30	30
Evaluate(Ev)	00	00	00
Create (Cr)	00	00	00

		k	.S.Rangasa	my College	of Technology	/ – Autonc	mous R2022	2		
					dvanced Data					
PDS: M. Tech Data Science										
Se	mester		Hours / Wee		Total hrs	Credit	N			
00	incotor	L	T	Р		С	CA	Total		
		3	0	0	45	3	40	60	100	
	duction				· · · · · ·		. –			
				-				xploratory Data	[9]	
		•	•					SQL Joins and		
00	•	1 0		lation, SQL S	Sub-queries, Ke	y Principle	s of RDBM			
	-	g and Index	-						[0]	
			-		-	-	uery Optimiz	ation and Cost	[9]	
		-	-		, Design Theory	/, BCNF				
	-			erprise Appl						
				•			-	se Concurrency	[9]	
			tion Failures	and Recove	ery, Database R	ecovery Pr	otocols.			
	llel Datak								[9]	
					dra, Redis, Mon	goDB, Apa	iche Hive		[-]	
	-			net Applicat						
						Store, and (Google File S	System; Yahoo's	[9]	
key-v	alue stor	e: PNUTS; A	mazon's key	/-value store	: Dynamo;					
								Total Hours	45	
Text	book(s):									
1.					effrey D. Ullman	, 'Databas	e Systems: T	he Complete Ha	indbook',	
		ion, Pearsor								
2.								L Databases in	a Week:	
			with the fund	amentals', 1	st Edition, Pack	t Publishin	g, 2018.			
Refe	rence(s):									
1.	-		an and Joha	annes Gehrk	ke, Database m	anagemer	nt systems, 3	Brd Edition, Mc	Graw Hill	
1.		ion, 2014.								
2.	-				nu, Foundations			•		
3.			•		•	•	ng Hive: Data	a Warehouse ar	nd Query	
5.	Langua	ge for Hadoo	p, 1st Editio	n, O'Reilly M	edia, Inc., 2012					
4.	Gerhard	Weikum ar	nd Gottfried	Vossen, Tra	ansactional Info	ormation S	ystems: The	ory, Algorithms,	and the	
4.	Practice	of Concurre	ency Control	and Recover	ry, 1st Edition, N	/lorgan Kau	ufmann, 2002	2.		

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Introduction to Data Science and Class Logistics/Overview	1
1.2	Statistical Inference	1
1.3	Exploratory Data Analysis	1
1.4	Principles of Data Management	1
1.5	SQL for Data Science: SQL Basics	1
1.6	SQL Joins and aggregates	1
1.7	Grouping and query evaluation	1
1.8	SQL Sub-queries	1
1.9	Key Principles of RDBM	1
2	Data Storaging and Indexing	
2.1	Data Models	1
2.2	Data Warehousing	1
2.3	OLAP	1
2.4	Data Storage and Indexing	1
2.5	Query Optimization and Cost Estimation	1
2.6	Datalog	1
2.7	E/R Diagrams and Constraints	1
2.8	Design Theory	1
2.9	BCNF	1
3	Data Management Solutions for Enterprise Applications	
3.1	Introduction to Transactions	1
3.2	Transaction Implementations	1
3.3	Transaction Model	1
3.4	Database Concurrency Control Protocols - Lock Based Concurrency Control Protocol.	1
3.5	Time Stamp Concurrency Control Protocol	1
3.6	Transaction Failures and Recovery - Stealing Frames and Forcing Pages	1
3.7	Recovery-Related Steps during Normal Execution	1
3.8	Database Recovery Protocols – ARIES	1
3.9	Recovering from System crash	1
4	Parallel Databases	
4.1	Introduction to NoSQL database	1
4.2	Apache Cassandra – Features, Use Cases, Anti Patterns	1
4.3	Hardware selection, Installation, configuration, node configuration, Running.	1
4.4	Redis – features, Use cases, Anti Patterns	1
4.5	Data modeling and Application Design, Hardware selection, Installation, configuration	1
4.6	MongoDB – Installation, Data types, Data Models	1

Course Contents and Lecture Schedule

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

P.P-M

4.7	MongoDB indexing, Replication, Sharding	1
4.8	Apache Hive – Data types, Data definition, Data manipulation	1
4.9	Queries, Views, Indexes, Schema, Tuning.	1
5	Data Management Solution for Internet Applications	
5.1	Google's Application Stack: Chubby Lock Service	1
5.2	BigTable Data Store and Google File System – Data model	1
5.3	Architecture	1
5.4	Yahoo's key-value store: PNUTS – Functionality	1
5.5	System architecture, Replication and Consistency	1
5.6	Applications	1
5.7	Amazon's key-value store: Dynamo Features, Data Partitioning	1
5.8	Design Principles, Techniques,	1
5.9	Replication, Versioning, Failure detection and Management	1
	Total	45

R.T.Dinesh Kumar (dineshkumarrt@ksrct.ac.in

60 PDS 104	Machine Learning Techniques	Category	L	Т	Ρ	Credit
		PC	3	0	0	3

- To gain the knowledge about learning, regression algorithms.
- To learn the neural networks and genetic algorithms.
- To familiarize the Bayesian and Computational Learning.
- To know the Instant Based Learning.
- To expose the Knowledge in Advanced Learning.

Prerequisite

Basic knowledge of Data mining and its applications

Course Outcomes

At	At the end of the course, the students will be able to						
CO1	Implement the concepts of learning process and Linear and logistic regression.	Apply					
CO2	Develop the Genetic Algorithms and programming.	Create					
CO3	Apply the Concept of Computational Learning process	Apply					
CO4	Explore the Concept of Instant Based Learning methods.	Analyse					
CO5	Acquire Knowledge in Advanced Learning methods.	Understand					
M	Manning with Programme Outcomes						

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	2	2
CO2	3	2	3	3	3	3
CO3	3	2	3	2	2	3
CO4	3	2	3	2	3	2
CO5	3	2	2	3	2	3
-Strong; 2-Med	ium; 1-Some	•	•	•	1	•

Assessment Pattern

Bloom's Category	Continuous	s Assessment Tests (Marks)	End Sem
	1	2	Examination(Marks)
Remember(Re)	00	00	00
Understand(Un)	20	20	30
Apply(Ap)	20	20	30
Analyse(An)	10	10	20
Evaluate(Ev)	00	00	00
Create(Cr)	10	10	20

	K			of Technolog			2	
		60		achine Learnir		lues		
				I.Tech Data So	1		laximum Marks	
Semeste	r	Hours / Wee	ek P	Total hrs	Credit		Tatal	
	' <u>L</u> 3	<u>Т</u> 0	Р 0	45	C 3	CA 40	ES 60	Total 100
Introductio		0	0	40	3	40	00	100
Learning _I	problems, pers	•			-	•	and candidate space search.	[9]
	logistic regressi			3,	,	,		
	works and Ger		ithms					
Neural net algorithms,	work represen	tation, prot s, hyper pa	olems, perce arameter optin	mization, genet	•		ick propagation s space search,	[9]
Bayes theo optimal cla probability	ssifier, Gibbs earning, sample	earning, m algorithm,	aximum likel naïve Bayes	s classifier, Ba	iyesian be	lief network,	principle, Bayes EM algorithm, d model	[9]
	sed Learning					0		[9]
	neighbor learnir	ig, locally w	eignted regre	ession, radial da	ISIS TUNCTION	ns, Case bas	ed learning	
rules, induc	ets of rules, sec ction on inverted	d deduction	, inverting rea	solution, analyt	ical learnin	g, perfect do	ets of first order main theories, poral difference	[9]
							Total Hours	45
Text book	s):							
1. Tom	M. 'Mitchell, Ma	chine Learr	ning', 2 nd Edit	ion, McGraw-Hi	ill Educatio	n India Privat	e Limited, 2017.	
.,	eas Muller,Sara ntists',4 th Edition			Machine Learn	ing with Py	thon: A Guide	e for Data	
Reference	(s):							
1. Step	nen Marsland, 'l	Machine Lea	arning: An Al	gorithmic Persp	ective', 2 nd	Edition, CRC	2 Press, 2014.	
2. D. Ba	arber, 'Bayesian	Reasoning	and Machine	e Learning', Car	mbridge Ur	niversity Pres	s, 2012.	
	m Alpaydin, 'Int on, MIT Press, 2		Machine Le	arning(Adaptive	e Computa	tion and Mac	hine Learning S	eries)',3
	, ,	.014.						

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2'5

Course Contents and Lecture Schedule

S.No	Торіс	No.of Hours
1	Introduction	1
1.1	Learning problems	1
1.2	Perspectives and issues	1
1.3	Concept learning	1
1.4	Version spaces and candidate eliminations	1
1.5	Inductive bias	1
1.6	Decision tree learning	1
1.7	Representation, algorithm	1
1.8	Heuristic space search	1
1.9	Linear and logistic regression	1
2	Neural Networks and Genetic Algorithms	1
2.1	Neural network representation, problems,	1
2.2	Perceptron's,	1
2.3	Multilayer networks and back propagation algorithms	1
2.4	Advanced topics,	1
2.5	Hyper parameter optimization	1
2.6	Genetic algorithms	1
2.7	Hypothesis space search	1
2.8	Genetic programming	1
2.9	Models of evaluation and learning	1
3	Bayesian and Computational Learning	1
3.1	Bayes theorem	1
3.2	Concept learning	1
3.3	Maximum likelihood – minimum description length principle	1
3.4	Bayes optimal classifier	1
3.5	Gibbs algorithm, naïve Bayes classifier, Bayesian belief network	1
3.6	EM algorithm, probability learning	1
3.7	Sample complexity	1
3.8	Finite and infinite hypothesis spaces,	1
3.9	Mistake bound model	1
4	Instant Based Learning	1
4.1	K- nearest neighbor learning	2
4.2	Locally weighted regression	2
4.3	Radial basis functions	2
4.4	Case based learning	2
5	Advanced Learning	1
5.1	Learning sets of rules	1
5.2	Sequential covering algorithm	1
5.3	Learning rule set, first order rules	1
5.4	Sets of first order rules, induction on inverted deduction	1
5.5	Inverting resolution, analytical learning	1
5.6	Perfect domain theories, explanation base learning, ,	1
5.7	FOCL algorithm	1
5.8	Reinforcement learning task, Q-learning	1
5.9	Temporal difference learning	1
	Total	45

Course Designers Ms.B.Manimegalai (<u>manimegalai@ksrct.ac.in</u>)

60 PDS 1P1	Machine Learning Laboratory	Category	L	Т	Ρ	Credit
00 FD3 IFI	Machine Learning Laboratory	PC	0	0	4	2

- To acquire knowledge in the hypothesis based concepts
- · To learn the decision tree algorithms and back propagation algorithms
- To Know the Accuracy of the classifier, Precision, and Recall fo the dataset
- To understand the Baysian network & apply EM Algorithm to cluster dataset
- To gain the K Nearest neighbor algorithms

Prerequisite

Basic knowledge of probability and Statistics, Data Mining

Course Outcomes

At the end of the course, the students will be able to

CO1	Implement and demonstrate the FIND-S algorithm for hypothesis based on a given set of training data samples.	Apply
CO2	Demonstrate the working of the decision tree & implement the basic propagation algorithm.	Apply
CO3	Compute the Accuracy of the Classifier & Calculate the accuracy, Precision and Recall of dataset.	Apply
CO4	Construct an a Bayesian network & apply EM Algorithm to cluster a data sets	Apply
CO5	Implementation of K Nearest Neighbor algorithm & Non parametric locally weighted regression algorithm	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	3	3	2		
CO2	3	2	3	2	2	3		
CO3	3	2	3	3	3	2		
CO4	3	2	3	3	3	3		
CO5	3	2	2	3	2	3		
Strong; 2-Medium; 1-Some								

Assessment Pattern				
Bloom's Category	Lab Experiments	Assessment (Marks)	Model Examination	End Sem Examination (Marks)
	Lab	Activity	– (Marks)	
Remember	-	-	-	-
Understand	-	-	-	-
Apply	40	15	80	80
Analyse	10	10	20	20
Evaluate	-	-	-	-
Create	-	-	-	-
Total	50	25	100	100

	K.S.Rangasamy College of Technology – Autonomous R2022									
	60 PDS 1P1 - Machine Learning Laboratory									
PDS: M.Tech Data Science										
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks		
Gemester	L	Т	Р		С	CA	ES	Total		
	0	0	4	60	2	60	40	100		
List of exper 1. Imple	mentation of	FIND S Algo	orithm							
2. Imple	mentation of	Candidate E	limination							
3. Imple	mentation of	Decision Tre	e							
4. Imple	mentation of	Backpropag	ation Algorit	hm						
5. Imple	mentation of	Naive Bayes	sian Classifie	er-Accuracy						
6. Imple	mentation of	Naive Bayes	sian Classifie	er- Accuracy, P	ecision, Re	ecall				
7. Imple	mentation of	Naive Bayes	sian Classifie	er- Heart Patien	ts Demons	tration				
8. Implementation of K-Means Algorithm										
9. Imple	mentation of	K-Nearest N	eighbour Al	gorithm						
10. Imple	mentation of	Regression	Algorithm							

Course Designers

Ms.B.Manimegalai (manimegalai@ksrct.ac.in)

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE-637215

(An Autonomous Institution affiliated to Anna University)

M. Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2024 - 2025)

SECOND SEMESTER

S.No.	Course	Name of the	Duration of	Weight	age of Mark	Minimum Marks for Pass in End Semester Exam		
5.NO.	Code	Course	Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total
		·	Т	HEORY				
1.	60 PDS 201	Exploratory Data Analysis	2	40	60	100	45	100
2.	60 PDS 202	Advanced Machine Learning	2	40	60	100	45	100
3.	60 PDS 203	Business Analytics	2	40	60	100	45	100
4.	60 PDS 204	Data Security and Privacy	2	40	60	100	45	100
5.	60 PDS E2*	Professional Elective II	2	40	60	100	45	100
6.	60 PDS E3*	Professional Elective III	2	40	60	100	45	100
7.	60 PAC 002	Disaster Management	2	100	-	100	-	45
		-	PR	ACTICAL				
8.	60 PDS 2P1	Term Paper and Seminar	2	100	-	100	-	100
9.	60 PDS 2P2	Exploratory Data Analysis Laboratory	2	60	40	100	45	100

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination and 40 marks for practical End Semester Examination.

CHAIRMAN BOARD OF STUDIES Department of information Technology. I.S.Rangasamy College of Technology. Tinichengode 637 215

60 PDS 201	Exploratory Data Analysia	Category	L	Т	Ρ	Credit
	Exploratory Data Analysis	PC	3	0	0	3

- To introduce big data and its importance towards analytics
- To familiarize the students with fundamentals of data analysis
- To expose the students to different of bigdata frameworks
- To compare structured and unstructured database
- To learn about the stream mining concepts

Prerequisite

Basic knowledge of Data mining and machine learning techniques.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identify the differences between reporting and analytics	Understand
CO2	Demonstrate fundamental mathematics behind analytics	Understand
CO3	Install Hadoop and write Map Reduce Programs	Create
CO4	Critically analyze different big data frameworks for programming, storage and Statistical analysis	Analyse
CO5	Apply mining techniques for stream data	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	2	3	2		
CO2	3	3	2	3	3	2		
CO3	3	2	2	2	3	2		
CO4	3	3	2	3	3	2		
CO5	3	3	3	3	3	3		
-Strong; 2-Medium; 1-Some								

Assessment Pattern

Bloom's Category	Continuous / (I	End Sem Examination	
	1	2	(Marks)
Remember(Re)	00	00	00
Understand (Un)	60	00	40
Apply (Ap)	00	00	20
Analyse (An)	00	30	20
Evaluate(Ev)	00	00	00
Create (Cr)	00	30	20

	K.	S.Rangasa	amy College	of Technolog	y – Autono	mous R2022	2		
		6	0 PDS 201 -	Exploratory D	ata Analys	is			
			PDS: N	I.Tech Data So	cience				
Semester	F	lours / Wee							
	L	Т	Р		C	CA	ES	Total	
	3	0	0	45	3	40	60	100	
Processes a significance-S	b Big Data – Ind Tools-Ar Sampling–infer	Need for b alysisvs ence-Mode	Reporting-C	ore Analytics			ability –Analytic ytics–Statistical	[9]	
Data Analysi Attributes– Gi Feature Spac Principal Com	raph Data - K e and Kernels ponent Analys	s-Univariat (ernel Meth s for Comp	nods - Kerne plex Objects	el Matrix, Vecto	or Kernels, ional Data	Basic Kerne -Dimensional	and Categorical I Operations in lity Reduction - mposition	[9]	
File Systems – Algorithms and Aggregati	o Hadoop and (HDS) and Ma Using Map-Ro on	ap Reduce	Architecture	s – Hadoop Ins	stallation - \	Nriting Mapre	oop Distributed duce Programs ations,Grouping	[9]	
Sqoop,Apache Introduction to Hadoop	Application edrill,Cloudera R Language	ilmpala–Int	roduction to	anguages for NoSQL databas g and visualizat	ses-HBase,	,MongoĎB–C		[9]	
	o Streams C eam – Filtering	g Streams	 Counting 				outing-Sampling ting Moments–	[9]	
<u> </u>							Total Hours	45	
Text book(s):									
1 Bill Fran				-inding Opportu	inities in Hu	ige Data Stre	ams with Advan	ced	
	medj.Zakiand dge University			ining and Analy	vsis- Fundai	mental Conce	epts and Algorith	ıms',	
3. Anand F	Rajaraman an	d Jeffrey D	avid Ullman,	'Mining of Mas	sive Datase	ets',Cambridg	e University Pre	ss,2012	
4. Vignesh	n Prajapati, 'Bi	g Data Ana	lytics with R	andHadoop',Pa	ckt Publish	ing Ltd,2013.			
Reference(s)	:								
^{1.} Streami	ng Data', McC	Graw-Hill Ec	ducation;1 st E		•		rise Class Had	oop an	
			•			-			
			8	ata Analysis',Sp		17.			
4. GlennJ.	iviyatt, 'Making	g Sense of	Data', JohnV	Viley& Sons, 20	JU7.				

CHAIRMAN BOARD OF STUDIES Department of information Techn K.S.Rangasamy College of Tech Tiruchengode 637 2 %

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Introduction to data analytics	
1.1	Introduction to Big Data	1
1.2	Need for big data, Web Data	1
1.3	Evolution Of Analytic Scalability	1
1.4	Analytic Processes and Tools	1
1.5	Analytics Reporting	1
1.6	Core Analytics vs Advanced Analytics	1
1.7	Statistical significance–Sampling	1
1.8	Inference	1
1.9	Modern Data Analytic Tools	1
2	Data Analysis-Fundamentals	
2.1	Data Analysis Foundations, Univariate	1
2.2	bivariate and multivariate analysis of Numeric and Categorical Attributes	1
2.3	Graph Data, Kernel Methods, Kernel Matrix, Vector Kernels	1
2.4	Basic Kernel Operations in Feature Space and Kernels for Complex Objects	1
2.5	High-dimensional Data	1
2.6	Dimensionality Reduction	1
2.7	Principal Component Analysis	1
2.8	Kernel Principal Component Analysis	1
2.9	Singular Value Decomposition	1
3	Analytical Frameworks-I	
3.1	Introduction to Hadoop and Map Reduce	1
3.2	Hadoop Features	1
3.3	Components of Hadoop	1
3.4	Hadoop Distributed File Systems (HDS) and Map Reduce Architectures	1
3.4	Hadoop Installation	1
3.5	Writing Mapreduce Programs	1
3.6	Algorithms Using Map-Reduce	1
3.7	Matrix-Vector Multiplication	1
3.8	Relational-Algebra Operations	1
3.9	Grouping and Aggregation	1
4	Analytical Frameworks–II	
4.1	Overview of Application development in Languages for Hadoop	1
4.2	Pig Latin, Hive, JAQL, Sqoop,	1
4.3	Apache Drill, Cloudera Impala	1

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2 %

4.4	Introduction to NoSQL databases	1
4.5	HBase,	1
4.6	MongoDB	1
4.7	CouchDB	1
4.8	Introduction to R Language for statistical computing and visualization	1
4.9	R Installation and integration with Hadoop	1
5	Mining Data Streams	
5.1	Introduction To Streams Concepts	1
5.2	Stream Data Model and Architecture	1
5.3	Stream Computing	1
5.4	Sampling Data in a Stream	1
5.5	Filtering Streams	1
5.6	Counting Distinct Elements in a Stream	1
5.7	Estimating Moments	1
5.8	counting one messina window in data stream	1
5.9	Decaying Window	1
	Total	45

Course Designers

Dr.V.R.SADASIVAM- sadasivam@ksrct.ac.in

60 PDS 202	Advanced Machine Learning	Category	L	Т	Ρ	Credit
00 PD3 202	Auvanceu Machine Leanning	PC	3	0	0	3

- To understand of the Supervised and Unsupervised learning techniques
- To understand learning strategy for any given problem
- To study the various probability-based learning techniques
- To apply the concepts of dimension reduction and evolutionary models
- To understand graphical models in machine learning algorithm

Prerequisite

Basic knowledge of Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the working of various advanced machine learning algorithms	Understand
CO2	Evaluate the appropriate machine learning strategy for any given problem	Evaluate
CO3	Apply the ensemble learning and probability based learning techniques	Apply
CO4	Analyze the decision tree for the given application	Analyse
CO5	Create the Dimensionality reduction techniques and Graph based models	Create

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	2	3	3		
CO2	3	3	3	2	3	3		
CO3	3	2	3	2	2	2		
CO4	2	3	3	2	3	3		
CO5 3 3 3 3 3 3 3								
3-Strong; 2-Me	dium; 1-Some	•	•	•	•	•		

Assessment Pattern			
Bloom's Category	Continuous / Tests(N	End Sem Examination(Marks)	
	1	2	
Remember(Re)	10	10	30
Understand(Un)	20	20	30
Apply(Ap)	10	20	30
Analyse(An)	20	10	10
Evaluate(Ev)	00	00	00
Create(Cr)	00	00	00

BOARD OF STUDIES BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology.

		ł			of Technolog			2	
			60		Advanced Mac		ing		
	PDS: M.Tech Data Science								
Ser	mester		Hours / We		Total hrs	Credit		Maximum Marks	T . (.)
									Total 100
Intro	duction	3	0	0	45	3	40	00	100
Learn Learn Learn	iing – Ty iing Syste iing as S	em – Persp Search – Fi	ectives and nding a Ma	l Issues in N aximally Spe	lachine Learnii	ng – Conc s – Versio	ept Learning n Spaces ar	euron – Design J Task – Conce nd the Candidat tegression.	ot roi
Multi- Perce Basis Basis	Function	rceptron – Practice – I ns and Splir ns – Support	Examples ones – Conce Vector Mac	f using the N epts – RBF I	ALP – Overviev	w – Derivir	ng Back Pro	Error – Multilaye pagation – Radi Interpolations ar	al [9]
Learn – Ens Learn	ning with ⁻ semble L ning – Da	.earning – E ata into Pro	ision Trees Boosting – babilities –	Bagging – D Basic Stati	ifferent ways to stics – Gaussia	o Combine an Mixture	Classifiers Models – I	Regression Tree – Probability an Nearest Neighbo Irganizing Featur	d [9]
Dime Dime – Inde Evolu	nsionality ependent itionary L	Reduction Componen earning – (– Linear Dis t Analysis – Genetic alge	Locally Line	alysis – Princip ar Embedding -	- Isomap – g: - Geneti	Least Squar c Operators	 Factor Analys res Optimization Using Genet ion Process. 	- [9]
Grap Marko	hical Mo ov Chain nical Moo	dels Monte Carl	o Methods	- Sampling	– Proposal Dis	stribution –	Markov Cha	ain Monte Carlo Iodels – Trackir	
								Total Hour	s 45
Text	book(s):								·
1.	Series),	3 rd Edition,	MIT Press,	2014	-	· ·	•	tion and Machin	e Learnin
2.		Murphy,' M	achine Lear	ning A Proba	bilistic Perspec	tive', The N	/IT Press, 20)12	
Refer	rence(s):				<u> </u>			1 1 4 -4	
1.	2014	-	Ū		•			onals', 1 st Editic	
2.		ach, - Mach Ige Universit			d Science of A	lgorithms t	hat Make Se	ense of Data', 1 st	Edition,
	Stophon								
3.						erspective'	, 2 nd Edition	, Chapman and	Hall/CRC

Course Designers

Mr.R.Arunkumar (rarunkumar@ksrct.ac.in)

Busiliess Analytics PC 3 0 0 3	60 PDS 203	Business Analytics	Category	L	Т	Р	Credit
	00 FD3 203	Business Analytics		3	0	0	3

- To expose with the basic rudiments of business intelligence system
- To Comprehend the modeling aspects behind Business Intelligence
- To learn the business intelligence life cycle and the techniques used in it
- To expose with different data analysis tools and techniques
- To apply the future technologies in business analytics

Prerequisite

Data Mining

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the Fundamentals of business analytics	Apply
CO2	Analyze the various modeling techniques	Analyse
CO3	Apply the data analysis and delivery stages of business analytics	Apply
CO4	Illustrate the methods in business analytics	Apply
CO5	Analyze the appropriate techniques in business analytics	Analyse

Mapping with Programme Outcomes

mapping main regianne euteeniee						
COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	2	2
CO2	2	2	3	2	2	3
CO3	2	2	3	3	3	2
CO4	2	2	3	2	2	3
CO5	2	2	3	2	2	2
3-Strong; 2-Mee	dium; 1-Some			•	•	•

Assessment Pattern

Bloom's Category	Continuous Asse	End Sem Examination		
Bloom's Category	1 2		(Marks)	
Remember(Re)	20	20	30	
Understand(Un)	20	20	20	
Apply (Ap)	10	20	30	
Analyze (An)	10	-	20	
Evaluate(Ev)	-	-	-	
Create(Cr)	-	-	-	

	r.:	o.rtanyasa		of Technolog 3 – Business				
				.Tech Data So				
Semester	F	lours / Wee		Total hrs	Credit	N	Aaximum Marks	
Semester	L	Т	Р	Total hrs	С	CA	ES	Total
	3	0	0	45	3	40	60	100
Introduction								
	•				-		atical models -	
	-		•		-	•	bling factors in	
	lligence proje	cts – Deve	elopment of a	a business inte	lligence sy	vstem – Ethic	s and business	;
intelligence								
Knowledge I	-							
	-	• •				•	Hoc Querying	
							rts/Notifications	
		•	•			• •	c Visualization	
<u> </u>	alytics, Consi	derations:	Optimizing t	he Presentation	n for the R	ight Message	9	
Efficiency								
•						• ·	Identification of	101
•	bod operating practices; cross efficiency analysis - virtual inputs and outputs - Other models. Pattern							
matching – cl	,	s, outlier ar	alysis					
Business Int	-							[9]
			duction mode	els – Case stud	ies.			[0]
	siness Intelli	-						
	-			-		-	g the Future, B	[9]
Search & Tex	t Analytics –	Advanced	Visualizatior	n – Rich Report	, Future be	eyond Techn	••	
							Total Hours	45
Text book(s)								
				elen, '[Decision	Support a	nd Business	Intelligence	
System	s', 9th Edition	, Pearson 2	2013.	Intelligence, Th			ide' Ord Edition	2042
		i, Kauimar	i, Business	intelligence: In	e Savvy Iv	lanager's Gu	uide', 2 nd Editior	, 2012.
Reference(s)		A		Desider of				Destate
^{1.} Making	', Addison We	esley, 2003	5.				ect Lifecycle of	
	Vercellis, 'Bu itions, 2009.	siness Int	elligence: D	ata Mining ar	nd Optimi	zation for D	ecision Making	g', Wile
	awaan 'Suaa	a a afril Dire		onco: Socrata	o Making		MaQuarter 11	1 2007
3. Cindi H	lowson, Succ	esstul Bus	iness inteilig	ence. Secrets	o waking	BI a Killer Ap	p', McGraw- Hi	II, 2007

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Effective and timely decisions	1
1.2	Data, information and knowledge	1
1.3	Role of mathematical models	1
1.4	Business intelligence architecture Cycle of a business intelligence analysis	1
1.5	Cycle of a business intelligence analysis	1
1.6	Enabling factors in business intelligence projects	1
1.7	Development of a business intelligence system	1
1.8	Ethics	1
1.9	business intelligence	1
2	Knowledge Delivery	
2.1	The business intelligence user types	1
2.2	Standard reports	1
2.3	Interactive Analysis	1
2.4	Ad Hoc Querying	1
2.5	Parameterized Reports and Self-Service Reporting	1
2.6	dimensional analysis	1
2.7	Alerts/Notifications	1
2.8	Visualization: Charts, Graphs, Widgets, Scorecards and Dashboards, Geographic	1
2.0	Visualization,	I
2.9	Integrated Analytics, Considerations: Optimizing the Presentation for the Right Message	1
3	Efficiency	
3.1	Efficiency measures	1
3.2	The CCR model: Definition of target objectives	1
3.3	Peer groups	1
3.4	Identification of good operating practices	1
3.5	Cross efficiency analysis	1
3.6	virtual inputs and outputs	1
3.7	Other models	1
3.8	Cluster analysis	1
3.9	Outlier analysis	1
4	Business Intelligence	
4.1	Marketing Models	1
4.2	Logistics and production models	1
4.3	Formal and Informal Models	1
4.4	Procurement Logistics	1

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 2%

	Total	45
5.9	Future beyond Technology	1
5.8	Rich Report	1
5.7	Advanced Visualization	1
5.6	Text Analytics	1
5.5	BI Search	1
5.4	Predicting the Future	1
5.3	Machine Learning	1
5.2	Emerging Technologies	1
5.1	Future of business intelligence	1
5	Future of Business Intelligence	
4.9	Dropshipping	1
4.8	Fulfilment	1
4.7	Warehouse model	1
4.6	Sales Logistics	1
4.5	Production Logistics	1

Mr.M.Thilakraj (<u>mthilakraj@ksrct.ac.in</u>)

	60 PDS 204	Data Security and Brivacy	Category	L	Т	Ρ	Credit
PC 3 0 0	00 PD3 204	Data Security and Privacy	PC	3	0	0	3

- To study different encryption techniques and attacks
- To learn Model Neuron and Neural Network, and to analyze ANN learning, and its applications
- To develop different single layer/multiple layer Perception learning algorithms
- To design of another class of layered networks using deep learning principles
- To analyze the different privacy preserving technology

Prerequisite

Basic knowledge of Computer Networks, Cryptography and Network Security

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Compare different encryption techniques and attacks	Understand
CO2	Model Neuron and Neural Network, and to analyze ANN learning, and its applications	Apply
CO3	Develop different single layer/multiple layer Perception learning algorithms	Analyse
CO4	Design of another class of layered networks using deep learning principles	Apply
CO5	Analyze the different privacy preserving technology	Analyze

Mapping with Programme Outcomes


COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	3	3	3		
CO2	2	2	3	3	3	2		
CO3	2	2	3	3	2	3		
CO4	2	2	3	3	3	3		
CO5	2	2	3	2	3	2		
3-Strong; 2-Medium; 1-Some								

Pleam's Category	Continuous Asso	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	00	00	00
Understand (Un)	30	00	30
Apply (Ap)	30	30	60
Analyze (An)	00	30	30
Evaluate(Ev)	00	00	00
Create (Cr)	00	00	00

		k	(.S.Rangasa	amy College	of Technolog	y – Autono	mous R202	22	
				0 PDS 204 -	Data Security	and Privac			
					I.Tech Data So	cience			
50	montor		Hours / Wee	k	Total hrs	Credit		Maximum Marks	
Se	mester	L	Т	Р	Total his	С	CA	ES	Total
	II	3	0	0	45	3	40	60	100
Data	Security	Fundamen	tals						
Tech Tech and Motiv	niques S niques, C the data vation for	ymmetric C Caesar Ciphe	ipher Model er, Monoalph standard: Tra Sipher	, Cryptograp	ohy, Cryptanaly er, Polyalphabe	vsis and Betic Cipher,	rute-Force One Time I	assical Encryptior Attack,Substitutior Pad.Block Ciphers and block Ciphers	[9]
Publ Princ Crypt Algor Crypt Attac schei PKIX	ic-Key Ci iples of tosystems ithm, Deu tosystems k, Simple me.Public Manager	ryptography Public-key s, Requiren scription of s:Diffe-Hellm secret key of keys certifi ment Protoco	Cryptosys nents for f the Algorith an Key Exc distribution, s cates, X.509 ols.	Public-Key m, Computa hange, The Secretkey dis	Cryptosystems. tional Aspects, Algorithm, Key stribution with c	Public-Ke the Secur exchange onfidentialit	ey Cryptan ity of RSA. protocols, y and authe	s for Public-Key alysis. The RSA Other Public-Key Man-in-the-Middle entication, A hybric gement Functions	[9]
Autho Crypt Autho autho princ	entication tography, entication entication; iples; pul	Biometric Protocol (P ; secure ha blic-key cry	orization, A authenticati PAP), Kerber sh functions ptography a	on, Out of os, Email a and Autho algorithms, o	band, Authe uthentication,- l prization Approa	ntication F PGP, Datal aches to h əs, key m	Protocols – base auther imac; public anagement.	tion, Public Key SSL, Password ntication, Message ckey cryptography Kerberos, x.509	[9] ,
Data Unde Effect techr	Privacy erstandin t of Datab nologies s	and Anonyr g Privacy: S base and Da uch RFID, b	mization Social Aspec ta Mining teo iometrics, et	ts of Privacy chnologies of c., Privacy N	v Legal Aspects n privacy challe lodels Introduct	of Privacy and of Privacy and of Privacy and of the other section of the	and Privacy by new em symization,	erging	[9]
Anonymization models:K-anonymity, I-diversity, t-closeness, differentialprivacy Database as aservice Data Privacy for Data Science Using technology for preserving privacy . Statistical Database security Inference Control Secure Multi- party computation and Cryptography Privacy-preserving Data mining Hippocratic databases Emerging Applications: Social Network Privacy, Location Privacy, Query Log Privacy, Biomedical Privacy							[9]		
Tovi	book(s)							Total Hours	40
1.	Edition, Pearson Education, 2017. Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Vol. 9, Nos. 3 - 4, D(
	rence(s):		_, _ , _ ,						
1.	Claire M productio	IcKay Bowe n/course_64	12/slides/ch	apter1.pdf	-			om/assets.datacar	np.com/
Ζ.	 Charu C. Aggarwal. and Philip S. Yu, Privacy-Preserving Data Mining: Models and Algorithms, 1st Edition, Springer, 2010. Michael E. Whitman and Herbert J. Mattord, Principles of Information Security, 6th Edition, Cengage Learning 								
3.	2018.			-	·		•		earning,
					ata Anonymizat rated, 2013.	ion: From F	Planning to I	mplementation,	

Course Contents and Lecture Schedule

R.P-M

BOARD OF STUE Department of information K.S.Rangasamy College o Tiruchengode 63:

S.No.	Торіс	No.of Hours
1	Data Security Fundamentals	
1.1	Computer Security Concepts, Intrusion Detection	1
1.2	Firewalls: Characteristics, Types	1
1.3	Classical Encryption Techniques Symmetric Cipher Model, Cryptography	1
1.4	Cryptanalysis and Brute-Force Attack	1
1.5	Substitution Techniques, Caesar Cipher	1
1.6	Monoalphabetic Cipher, Polyalphabetic Cipher, One Time Pad	1
1.7	Block Ciphers and the data encryption standard: Traditional block Cipher structure	1
1.8	Stream Ciphers and Block Ciphers	1
1.9	Motivation for the Feistel Cipher structure, the Feistel Cipher.	1
2	Public-Key Cryptography	
2.4	Principles of Public-key Cryptosystems, Public-Key Cryptosystems, Applications for	4
2.1	Public-Key Cryptosystems.	1
2.2	Requirements for Public-Key Cryptosystems. Public-Key Cryptanalysis.	1
2.3	The RSA Algorithm, Description of the Algorithm.	1
2.4	Computational Aspects, the Security of RSA.	1
	Other Public-Key Cryptosystems: Diffe-Hellman Key Exchange, The Algorithm, Key	
2.5	exchange protocols, Man-in-the-Middle Attack.	1
	2.6 Simple secret key distribution, Secret key distribution with confidentiality and authentication, A hybrid scheme.	
2.6		
2.7	Public keys certificates.	1
2.8	X.509 certificates.	1
2.9	Public key infrastructure, PKIX Management Functions, PKIX Management Protocols.	1
3	Authentication and Authorization	
3.1	Authentication Vs Authorization, Authentication Methods – Password authentication,	1
	Public Key Cryptography	
3.2	Biometric authentication, Out of band	1
3.3	Authentication Protocols – SSL	1
3.4	Password Authentication Protocol (PAP)	1
3.5	Kerberos, Email authentication	1
3.6	PGP, Database authentication	1
3.7	Message authentication, Secure hash functions and Authorization Approaches to hmac;	1
-	public key cryptography principles;	
3.8	Public-key cryptography algorithms, digital signatures, key management.	1
3.9	X.509 directory authentication service. Authorization Definition, Multilayer authorization.	1
4	Data Privacy and Anonymization	
4.1	Data Privacy And Anonymization Understanding Privacy: Social Aspects of Privacy	1
4.2	Legal Aspects of Privacy and Privacy Regulations	1

R.P-

4.3	Effect of Database and Data Mining technologies on privacy	1
4.4	Challenges raised by new emerging technologies such RFID, biometrics, etc.,	1
4.5	Privacy Models, Introduction to Anonymization models	1
4.6	K-anonymity	1
4.7	I-diversity, t-closeness	1
4.8	Differential privacy and Extensions	1
4.9	Database as a service	1
5	Data Privacy for Data Science	
5.1	Using technology for preserving privacy. Statistical Database security	1
5.2	Inference Control	1
5.3	Secure Multi-party computation and Cryptography	1
5.4	Privacy-preserving Data mining	1
5.5	Hippocratic databases	1
5.6	Emerging Applications: Social Network Privacy	1
5.7	Location Privacy	1
5.8	Query Log Privacy	1
5.9	Biomedical Privacy	1
	Total	45

R.T.Dinesh Kumar (dineshkumarrt@ksrct.ac.in)

		K.S.Rangasa	amy College	of Technolog	y – Autono	mous R2022		
		e		- Term Paper a		r		
		Hours / Wee		I.Tech Data So	Credit	Ma	aximum M	larks
Semester	L		P	Total hrs	C	CA	ES	Total
II	0	0	2	30	0	100	00	100
				ical reading and	d writing sk	ills that they n	eed to Ur	nderstand and
		ruct research						
				riety of sources	(i.e Journa	als, dictionaries	s, referen	ce books) and
Objective(s)		place it in logi						
		•	•	he research are		•	em	
		•		odel for the ider	•	em		
				ents will be ab				
				hy such as nation		ational referred	iournals	s forthe
		ferred areas o		,			,	
Course				eading and writi	ng skills for	the technical i	eport pre	paration to
Outcomes		y it in their top				<i>a</i>		
				ny problem in t			ical annli	inationa
				rious complex p deliver their wo				
Note: The ho				indicative. Th				
				depth of covera				
the examination	ons shall no	ot depend on t	he number c	f hours indicate				•
The work inv								
1. Selecting a		rrowing the s	ubject into a	topic.				
 Stating an of 3. Collecting the state of th		hibliography	(at least 15 i	ournal papare)				
4. Preparing a			at least 15 ju	bumai papers)				
			ling the autho	ors contribution	s and critica	allv		
analysing eac)		[9]
6. Preparing a								
7. Linking the								
8. Preparing c								
9. Writing the				uon u is maintained				
Activities to be			led out by yo	u is maintaineu	•			
		-	Instruc	tiona		Submissi	on ,	Evaluation
Activity			Instruc	tions		week		
Selection of								Based on
area of interes	st An	area of intere	st, topic has	to be selected a	and	Ond		ity of thought,
and Topic		ective to be fr				2 nd week		ent relevance
Stating an Objective							writi	clarity in
Objective							VVIILI	ing
			nterest Grou	ps or professior	nal society			
		ist 2 journals		ia or workshops				(the selected
Collecting		List 1 thesis ti			>			rmation must
Information				ing lists, forums	S.	3 rd week	be a and	area specific
about chosen		News sites)			-,	3.ª week		rnational and
area & topic	6. l	ist 6 authors		regularly in you				onal
				FP) from your a				ndard)
8. Conference/Journal/Symposium in the chosen area.								-
Collection of		· .						
Journal papers	o in			ferences you w		445		(the list of
the topic in the	_ u			ve -Search vari	ous	4 th week		dard papers
context of the	d	igital libraries	and Google	Scholar			and	reason for
	. 22.07.202		l Passed in Bo					

R.P-M

objective – collect	• When nicking naners to road try to:		selection)
20 & then filter	• When picking papers to read – try to:		selection)
	• Pick papers that are related to each other in some		
	ways and/or that are in the same field so that a		
	meaningful survey can be written		
	Favour papers from well-known journals		
	And conferences,		
	• Favour—firstll or foundationalll papers in the field (as		
	indicated in other people's survey paper),Favour more		
	recent papers,		
	Pick a recent survey of the field so you can quickly		
	gain anoverview,		
	• Find relationships with respect to each other and to		
	your topic area (classification scheme/categorization)		
	Mark in the hard copy of papers whether complete		
	work or section/sections of the paper are being		
	considered		
	Reading Paper Process		
	• For each paper form aTable answering the following		
	questions:		
	What is the main topic of thearticle?		
	 What was/were the main issue(s) the author said 		
	they want to discuss?		8% (the table
	 Why did the author claim it was important? 		given should
	How does the work build on other's work, in the		indicate your
	author'sopinion?		understanding of
Reading and notes	What simplifying assumptions does the author claim	5 th week	the paper and the
for first 5 papers	to bemaking?	J WEEK	evaluation is
	What did the authordo?		based on your
	 How did the author claim they were going to 		conclusions
	evaluate their work and compare it toothers?		about each
	What did the author say were the limitations of their		paper)
	research?		
	 What did the author say were the important 		
	directions for future research?		
	Conclude with limitations/issues not addressed by		
	the paper (from the perspective of your survey)		
			8%(the table
			given should
			indicate your
Deedlers state			understanding of
Reading and notes	Repeat Reading Paper Process	6 th week	the paper and the
for next5 papers			evaluation
			isbased on your
			conclusions
			about eachpaper)
			8%(the table
			given should
Reading and			indicate your
notes for final 5	Repeat Reading Paper Process	7 th week	understanding of
papers			the paper and the
			evaluation is
			based on your
	1	1	,

			conclusions about each paper)
Draft outline 1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification / categorization diagram	8 th week	8%(this component will be evaluated based on the linking and classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6%(Clarity, purpose and conclusion) 6% resentation & Viva Voce
Introduction Background	Write an introduction and background sections	10 th week	5% (clarity)
Sections of the paper	Write the sections of your paper based on the classification / categorization diagram in keeping with the goals of your survey	11 th week	10% (this component will be evaluated based on the linking and classification among the papers)
Conclusions	Write your conclusions and future work	12 th week	5% (conclusions – clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report
Seminar	A brief 15 slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

60 PDS 2P2	Exploratory Data Analysis Laboratory	Category	L	Т	Ρ	Credit
00 FD3 2F2	Exploratory Data Analysis Laboratory	PC	0	0	4	2

- To optimize business decisions and create competitive advantage with Big Data analytics.
- To impart the architectural concepts of Hadoop and introducing map reduce paradigm.
- To introduce Java concepts required for developing map reduce programs and derive business benefit from unstructured data.
- To introduce programming tools PIG & HIVE in Hadoop echo system.
- To develop Big Data applications for streaming data using Apache Spark.

Prerequisite

Basic knowledge of Data mining and machine learning techniques.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Prepare for data summarization, query and analysis	Apply
CO2	Apply data modelling techniques to large data sets	Apply
CO3	Install Hadoop and write MapReduce Programs	Apply
CO4	Create applications for Big Data analytics	Apply
CO5	Build a complete business data analytic solution	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	2	3
CO2	3	3	2	3	3	3
CO3	3	2	2	2	2	3
CO4	3	3	2	3	3	2
CO5	3	3	3	3	3	3

Assessment Pattern			-			
Bloom's Category	Lab Experiments	Assessment (Marks)	Model Examination	End Sem Examination (Marks)		
-	Lab	Activity	(Marks)	, ,		
Remember	-	-	-	-		
Understand	-	-	-	-		
Apply	40	15	80	80		
Analyse	10	10	20	20		
Evaluate	-	-	-	-		
Create	-	-	-	-		
Total	50	25	100	100		

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology.

	60 PDS			Analysis Labor	atory			
	•		I.Tech Data	Science				
Semester		Hours / W		Total hrs	Credit		ximum	1
	L	Т	Р		С	CA	ES	Tota
<u> </u>	0	0	4	60	2	60	40	100
_ab Exercises: . (i)Perform setting up and In:	stalling Had	loon in its tw	o operating m	odes:				
 Pseudo distributed, 	stanning had		o operating m	0003.				
 Fully distributed. 								
i) Use web based tools to mo	nitor Hadoo	op setup.						
. (i) Implement the following f			n Hadoop:					
Adding files and direc								
 Retrieving files 								
 Deleting files 								
Benchmark and stress test a								
. Run a basic Word Count Ma					igm.			
Find the number of oc				• • • • •				
Performing a MapRec		r word searc	n count (look i	for specific keywo	ordsin a file)			
 Stop word elimination proble Input: 	em.							
 A large textual file cor 	ntaining one	sentence n	orlino					
 A small file containing 				er line)				
 Output: 								
 A textual file containin 	o the same	sentences	of the large inr	out file without the	words appea	rina in th	ne sma	ll file.
. Write a Map Reduce progra								
cross the globe	gather	large			lata, Dat		vailable	
ttps://github.com/tomwhite/ha								
 Find average, max an 								
Filter the readings of					e lineof input	files as	sociate	d with
temperature value gre	eater than 3	0.0 and stor	e itin a separa	ite file.				
5. Purchases.txt Dataset	the color d	awa bu atar			humroduct oo	+		
 Instead of breaking t stores 	the sales of	own by stor	e, give us a s	ales breakdown	byproduct ca	legory a	cross a	
 What is the value of the value	total sales f	or the follow	ina categories	2				
 Toys 			ing categories	•				
 Consumer Electronic 	s							
Find the monetary va		highest indiv	idual sale for	each separate sto	ore			
What are the values	for the follo	wing stores?	?	•				
Reno		-						
Toledo								
Chandler								
Find the total sales v								
7. Install and Run Pig then wri 3. Write a Pig Latin scripts for						ble at: P	roioct	
Gutenberg)					JOKS availa		lojeci	
). Install and Run Hive then us	se Hive to c	reate. alter.	and drop data	bases, tables, vie	ws. functio	ns, and i	ndexes	S.
0. Install, Deploy & configure								
1. Data analytics using Apach	he Spark or	n Amazon fo	od dataset, fin	d all the pairs of i	items frequen	tly review	wed tog	gether.
Write a single Spark a								
 Transposes the origin 				PairRDD of the ty	pe:			
$\langle user_id \rangle \rightarrow \langle list of th$								
Counts the frequencies								. .
Writes on the output f			oducts that ap	pear more than o	onceand their	rtrequer	ncies. T	ne pai
	unea by tre	equency.					_	
of products must be s								
of products must be s course Designers or.V.R.Sadhasivam <u>sadhasiv</u>	vam@kara	tac in)						

R.P-M

60 PDS E11	Artificial Intelligence and Internet of Things	Category	L	Т	Ρ	Credit	l
OUPDS EIT	Artificial interrigence and interriet of Things	PE	3	0	0	3	l

• To present an overview of artificial intelligence (AI) principles and approaches

- To develop a basic understanding of the building blocks of AI
- To implement a small AI system in a team environment.
- To provide the students with understanding of Internet of Things (IoT).
- To learn about various IOT-related protocols

Prerequisite

Basic knowledge of Artificial Intelligence, Big Data.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the various characteristics of Intelligent agents.	Understand
CO2	Learn the different search strategies in AI.	Analyse
CO3	Learn to represent knowledge in solving AI problems.	Apply
CO4	Explain the concept of IoT.	Understand
CO5	Analyze various protocols for IoT.	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	2
CO2	3	2	3	3	3	3
CO3	3	2	3	2	2	3
CO4	3	2	3	3	3	3
CO5	3	2	3	3	3	3
3- Strong; 2-Me	dium; 1-Some	1		•		

Bloom's Category		ssessment Tests Iarks)	End Sem Examination (Marks)
	1	2	
Remember(Re)	00	00	00
Understand (Un)	25	15	30
Apply (Ap)	20	30	40
Analyse(An)	00	00	00
Evaluate(Ev)	15	15	30
Create (Cr)	00	00	00

		ĸ	.S.Ranga	samy Colleg	e of Technolog	gy – Autor	nomous R20)22		
			60 PDS E	E11 - Artificia	al Intelligence	and Intern	et of Thing	6		
PDS: M.Tech Data Science										
Semes	tor	ŀ	lours / We	ek	Total hrs	Credit		arks		
Semes	ler	L	Т	Р	Total his	С	CA	ES		otal
	_	3	0	0	45	3	40	60	1	00
	on–D				lligence – Cha Typical Al probl		s of Intellig	ent Agents-	Typical	[9]
Problem Algorithm Problems	solvii is an s – Co	d Optimizati	 Search on Problem pagation - 	ms – Search - Backtracking	Uninformed - ning with Partia g Search – Gai	al Observa	ations – Cor	nstraint Satis	faction	[9]
First Ord Resolutio	er Pre on – I Events	Knowledge	c – Prolog Representa	ation – Onto	g – Unification logical Enginee ing Systems f	ering-Cateo	gories and (Dbjects – Ev	rents –	[9]
(IoTWF) Edge an	of In and A d Clou	iternet of Th Alternative Io	T models	- Simplified	iologies – IoT IoT Architectui IoT ecosystem	re and Cor	re IoT Funct	ional Stack -	– Fog,	[9]
802.15.4 Constrain Networks	ss Te e, 19 ned N s – Ap	echnologies: 01.2a, 802. etworks – O	11ah and ptimizing II ansport Me	LoRaWAN - P for IoT: Fro	ers, topology a - Network Lay m 6LoWPAN to rvisory Control	er: IP ver o 6Lo, Rou	sions, Cons iting over Lo	trained Node w Power and	es and Lossy	[9]
1 1010001	. 00/							Total	Hours	45
Text boo	k(s):									
1. S.	Russe				ce: A Modern A					
					rossetete, Rob e Cases for Inte				undame	ntals:
Referen										
		Jones, — 'A Publishers, li		-	Systems Approa	ach(Compu	uter Science)', Jones and	d	
					elligencell', Can	nbridge Un	niversity Pres	s, 2009.		
3. Ars	hdee	pBahga, Vija	ay Madiset	ti, —Internet	of Things – A h	ands-on ap	pproach, Uni	versities Pres	ss, 2015	
	vier H	lersent, Da	vid Boswa	arthick Oma	r Elloumi —	The Intern	et of Thing	e Kovan	nligation	a and

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Introduction	1
1.2	Definition	1
1.3	Future of Artificial Intelligence	2
1.4	Characteristics of Intelligent Agents	2
1.5	Typical Intelligent Agents	2
1.6	Problem Solving Approach to Typical AI problems	1
2	Problem Solving Methods	
2.1	Problem solving Methods	1
2.2	Search Strategies- Uninformed – Informed	1
2.3	Heuristics – Local Search Algorithms and Optimization Problems	1
2.4	Searching with Partial Observations	1
2.5	Constraint Satisfaction Problems	1
2.6	Constraint Propagation – Backtracking Search	1
2.7	Game Playing – Optimal Decisions in Games	1
2.8	Alpha – Beta Pruning	1
2.9	Stochastic Games	1
3	Knowledge Representation	1
3.1	First Order Predicate Logic	1
3.2	Prolog Programming – Unification	1
3.3	Forward Chaining-Backward Chaining	1
3.4	Resolution – Knowledge Representation	1
3.5	Ontological Engineering	1
3.6	Categories and Objects	1
3.7	Events – Mental Events and Mental Objects	1
3.8	Reasoning Systems for Categories	1
3.9	Reasoning with Default Information	1
4	Fundamentals of IoT	1
4.1	Evolution of Internet of Things	1
4.2	Enabling Technologies	1
4.3	IoT Architectures: oneM2M	1
4.4	IoT World Forum (IoTWF) and Alternative IoT models	1
4.5	Simplified IoT Architecture and Core IoT Functional Stack	1
4.6	Fog, Edge and Cloud in IoT	1
4.7	Functional blocks of an IoT ecosystem	1
4.8	Sensors, Actuators, Smart Objects	1
4.9	Connecting Smart Objects	1
5	IoT Protocols	1
5.1	IoT Access Technologies: Physical and MAC layers	1
5.2	Topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN	1
5.3	Network Layer: IP versions	1
5.4	Constrained Nodes and Constrained Networks	1
5.5	Optimizing IP for IoT: From 6LoWPAN to 6Lo	1
5.6	Routing over Low Power and Lossy Networks	1
5.7	Application Transport Methods: Supervisory Control and Data Acquisition	1
5.8	Application Layer Protocols: CoAP and MQTT	2
-	Tota	

Course Designers

S.Gayathri-gayathris@ksrct.ac.in

60 PDS E12	Soft Computing and its Applications	Category	L	Т	Ρ	Credit
	Soft Computing and its Applications	PE	3	0	0	3
Objective						

- To understand Soft Computing concepts, technologies, and applications •
- To know the underlying principle of soft computing with its usage in various application. •
- To compare different genetic algorithms .
- To analyze supervised and unsupervised learning algorithms
- To understand different soft computing tools for solving real life problems. •

Prerequisite

Basic knowledge of Neural Network, and Deep Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know soft computing basics	Analyse
CO2	Develop application on different soft computing techniques like Fuzzy logic and its applications.	Apply
CO3	Solve single-objective optimization problems using Gas	Apply
CO4	Compare artificial neural networks and its applications	Apply
CO5	Apply Soft computing to solve problems in various application domains.	Analyse
Ма	apping with Programme Outcomes	·

COs	P01	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	2	3	3		
CO2	2	2	3	3	3	3		
CO3	2	2	3	2	2	2		
CO4	2	2	3	3	3	3		
CO5	2	2	3	3	3	3		
3-Strong; 2-Medium; 1-Some								

Assessment Pattern			
Pleam's Category	Continuous Ass	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	10	10	-
Understand (Un)	20	20	20
Apply (Ap)	20	30	40
Analyze (An)	10	-	40
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

	۴	K.S.Rangasa	amy College	of Technolog	/ – Autono	mous R202	2		
		60 PDS		Computing an		cations			
PDS: M.Tech Data Science									
Semester		Hours / Wee	k	Total hrs	Credit	Maximum Marks			
Semester	L	Т	Р	TOTALLIS	С	CA	ES	Total	
	3	0	0	45	3	40	60	100	
Introduction to Soft Computing Concept of computing systems - "Soft" computing versus "Hard" computing - Characteristics of Soft computing - Some applications of Soft computing techniques									
	es, propositio	ons, implica	tions and i				sets - Fuzzy es - Fuzzy log	ic [9]	
	Genetics" an id different (GA architect	tures - GA	operators: Enc			ques - Basic G ction, Mutation		
perceptron, Balayer, accele	earning: Intra ack propagat rated learni Hebbian lea	oduction and tion networks ng in mult	s: architectur ilayer perce	e, multilayer pe ptron - Unsu	rceptron, b pervised L	ackpropagat _earning: He	ng element, Th ion learning-inp ebbian Learnin putational Map	ut g, [9]	
Hybrid Systems: Sequential Hybrid Systems, Auxiliary Hybrid Systems - Embedded Hybrid Systems - Neuro-Fuzzy Hybrid Systems, Neuro - Genetic Hybrid Systems - Fuzzy - Genetic Hybrid Systems							id [9]		
							Total Hou	's 45	
Text book(s):									
		l sue Ellen H	laupt.' Practi	cal Genetic Alg	orithms' Jo	hn Willev & S	ons. 2002.		
				Edition, Simon					
Reference(s)			, -	,.	, ,	J,			
		gineering Ap	plications 3 rd	^d Edition, Timotl	ny J. Ross,	Willey, 2010			
2. An Intro	duction to G	enetic Algori	thms, Melan	ie Mitchell, MIT	Press, 200)0.			
3. Genetic 2002.	Algorithms	In Search, C	ptimization	And Machine L	earning, Da	avid E. Goldk	erg, Pearson E	ducatior	
	archive.nptel.	ac.in/course	s/106/105/10	06105173/					
			o, 100/100/10						

No.of Hours S.No. Topic 1 Introduction to Soft Computing Introduction 1.1 1 1.2 Concept of computing 1 1 1.3 systems 1.4 "Soft" computing versus "Hard" computing 1 1.5 Characteristics of Soft 1 1.6 computing 1 Some applications of Soft computing techniques 1 1.7 1.8 Soft computing 1 1.9 Hard computing 1 2 Fuzzy logic 2.1 Introduction to Fuzzy logic 1 2.2 Fuzzy sets and membership functions 1 2.3 Operations on Fuzzy sets 1 2.4 Fuzzy relations, rules, 1 propositions, implications and inferences 2.5 1 2.6 Defuzzification techniques 1 2.7 Fuzzy logic controller design 1 2.8 Some applications of Fuzzy logic 1 Some applications of Fuzzy logic 2.9 1 3 Genetic Algorithms Concept of "Genetics" and "Evolution" and its application to probabilistic search techniques 3.1 1 3.2 Basic GA framework and different GA architectures 1 3.3 GA operators: 1 3.4 Encoding 1 3.5 Crossover 1 3.6 Selection 1 Mutation 3.7 1 3.8 Solving single 1 3.9 objective optimization problems using Gas 1 Artificial Neural Networks 4 4.1 Supervised Learning 1 Introduction and how brain works 4.2 1 Neuron as a simple computing element 4.3 1 4.4 The perceptron, Back propagation networks 1 4.5 architecture, multilayer perceptron, backpropagation learning 1 4.6 Input layer, accelerated learning in multilayer perceptron 1

Course Content and Lecture Schedule

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

DARD OF STUDIES of of information Technisamy College of Tech

4.7	Unsupervised Learning: Hebbian Learning,	1
4.8	Generalized Hebbian learning algorithm, Competitive learning,	1
4.9	Self- Organizing Computational Maps: Kohonen Network.	1
5	Hybrid Systems	
5.1	Sequential Hybrid Systems	1
5.2	Auxiliary Hybrid Systems	1
5.3	Embedded Hybrid Systems	1
5.4	Neuro-Fuzzy Hybrid Systems	1
5.5	Neuro - Genetic Hybrid Systems	1
5.6	Neuro - Genetic Hybrid Systems	1
5.7	Fuzzy - Genetic Hybrid Systems	1
5.8	Embedded Hybrid Systems	1
5.9	Fuzzy - Genetic Hybrid Systems	1
	Total	45

Mr.P.Dineshkumar (p.dineshkumar@ksrct.ac.in)

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

60 PDS E13	Data Mining and Applications	Category	L	Т	Ρ	Credit
		PE	3	0	0	3

- To Identify the scope and necessity of Data Mining algorithms.
- To Underst and the fundamentals of data mining and its functionalities.
- To Realize the issues regarding classification and prediction.
- To understand various tools of Data Mining and their techniques to solve the real time problems.
- To acquire skills to understanding the concepts of Spatial Mining

Prerequisite

Basic knowledge of Neural Network, and Deep Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Classify the diverse attributes in data mining	Analyse
CO2	Analyze decision tree algorithm for classification	Apply
CO3	Apply various clustering algorithms for different datasets	Apply
CO4	Analyze the concepts of rule mining and visualization	Apply
CO5	Apply the concepts of Web, Temporal and spatial data mining	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	3	3	3		
CO2	2	2	3	3	3	3		
CO3	2	2	3	2	2	2		
CO4	2	2	3	3	3	3		
CO5	3	2	2	3	3	3		
Strong; 2-Medium; 1-Some								

Bloom's Category		sessment Tests arks)	End Sem Examination (Marks)
	1	2	
Remember(Re)	10	10	-
Understand (Un)	20	20	20
Apply (Ap)	20	30	40
Analyse (An)	10	-	40
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

	k			of Technolog			2		
		60		ata Mining and		ons			
				I.Tech Data So					
Semester	_	Hours / Wee		Total hrs	Credit		Maximum Ma	1	
	L	Т	Р		С	CA	ES	-	otal
	3	0	0	45	3	40	60	10	00
Introduction							··· .· ·	D (
Mining System Issues In Data Visualization- Preprocessing Integration.	ns-Data Mini Mining-Typ Measuring - Data Red	ng Task Prir es of Data S Data Simi	mitives-Integr Sets and Attri larity. PREF	g Functionalities ration of A Data bute Values-Ba PROCESSING: on and Data [Mining Sy sic Statisti Data Qu	vstem With A cal Descripti ality- Major	Database- I ons of Data- Tasks in	Vajor Data Data	[9]
Classification Classification Multiclass Cla time related se	-Classificat -Classificatio Using Free ssification - S equence data	on by Back quent Patter Semi-Superv	propagatior rns - k-Nea	e Introduction- Support Vecto arest-Neighbor ication- Mining	or Machine Classifiers	es -Associat s - Case-Ba	ive Classifica ased Reaso	ation, ning-	[9]
Partitioning N Clustering Me Distribution Ba Clustering Bas	is: Types of lethods-Hiera thods-Cluste ased Outlier sed Outlier D	archical me ering HighDir Detection - retection-Dev	thods-Densit mensional D A Statistics I viation Based	A Categorization y Based Meth ata-ConstraintE Based Approace d Outlier Detect	ods-Grid E ased Clus h-Classifica	Based Metho ter Analysis,	ods-Model B Outlier Ana	lysis-	[9]
Algorithms –	ule Mining - Comparing Quality of I	- Introductio Approaches Rules – Visu	n – Large It – Incremen Jalization of	em sets – Bas tal Rules – Ac Multidimension oplications	vanced As	ssociation R	ule Techniqu	ies –	[9]
Web, Text, Te Multidimension webcontent m discovery for t Introduction;	mporal and nal Analysis ining, web s exts, hierarcl Temporal DE,SPIRIT	Spatial Dat and Descr tructure min hy of catego Data Minir Episode D	a Mining riptive Minin hing, we usa ries, text clus ng , Temp iscovery, Ti	g of Complex ge mining, Tex	t mining, u ion Rules	instructured s, Sequence	text, episode e Mining, ı, Spatial M	GSP GSP lining	[9]
							Total H	ours	45
1. 2008. 2. Pang-Ni Reference(s):	lan and Mich ng Tan, 'Mic	hael Steinba	ach and Vipir	ng Concepts and h Kumar "Introdu Practical Machir	uction to Da	ata Mining', F	Pearson Educ	cation, 2	007.
^{1.} Morgan 2 Jiawei H	Kaufmann, 2	2016 eKamber, Ji	-	a Mining Conce	-		·		-,
3. Nathan Manning	Marz, Samue Publication	el E. Ritchie s Company,	2013	inciples and bes ehousing, Data	•			-	າຣ' ",
	eprint 2007.	phen J. Smi		enousing, Data	winning & C			⊏uition,	

CHAIRMAN BOARD OF STUDIES Department of information Tec K.S.Rangasamy College of Tec Tiruchengode 637 2 %

	Course Contents and Lecture Schedule	
S.No	Торіс	No. of Hours
1	Introduction to Data Mining	1
1.1	Definition of Data Mining-Kind of Data-Data Mining Functionalities-Kinds of Patterns	1
1.2	Classification of Data Mining Systems-Data Mining Task Primitives	1
1.3	Integration of A Data Mining System With A Database	1
1.4	Major Issues In Data Mining-Types of Data Sets and Attribute Values	1
1.5	Basic Statistical Descriptions of Data- Data Visualization- Measuring Data Similarity	1
1.6	PREPROCESSING: Data Quality- Major Tasks in Data Preprocessing	1
1.7	Data Reduction	1
1.8	Data Transformation and Data Discretization	1
1.9	Data Cleaning and Data Integration	1
2	Classification	
2.1	Classification -Classification by Decision Tree Introduction	1
2.2	Bayesian Classification-Rule Based Classification -Classification by Back propagation	2
2.3	Support Vector Machines -Associative Classification	1
2.4	Classification Using Frequent Patterns - k-Nearest-Neighbor Classifiers	1
2.5	Case-Based Reasoning- Multiclass Classification	1
2.6	Semi-Supervised Classification	1
2.7	Mining Time series Data	1
2.8	Periodicity Analysis for time related sequence data	1
3	Clustering Analysis	
3.1	Cluster Analysis: Types of Data in Cluster Analysis-A Categorization of Major Clustering Methods	1
3.2	Partitioning Methods-Hierarchical Methods-Density Based Methods	1
3.3	Grid Based Methods-Model Based Clustering Methods	1
3.4	Clustering High Dimensional Data-Constraint Based Cluster Analysis	1
3.5	Outlier Analysis- Distribution Based Outlier Detection	1
3.6	A Statistics Based Approach	1
3.7	Classification Based Outlier Detection	1
3.8	Clustering Based Outlier Detection	1
3.9	Deviation Based Outlier Detection	1
4	Association Rule Mining and Visualization	•
4.1	Association Rule Mining – Introduction – Large Item sets	1
4.2	Basic Algorithms – Parallel and Distributed Algorithms	1
4.3	Comparing Approaches- Incremental Rules	1
4.4	Advanced Association Rule Techniques	1
4.5	Measuring the Quality of Rules	1
4.6	Visualization of Multidimensional Data	1
4.7	Diagrams for Multidimensional visualization	1
4.8	Visual Data Mining	1
4.0	Data Mining Applications	1
4.9 5	Web, Text, Temporal and Spatial Data Mining	1
5.1	Multidimensional Analysis and Descriptive Mining of Complex Data Objects	1
5.2	Introduction, web mining, webcontent mining, web structure mining,	1
5.2 5.3	we usage mining, Text mining, unstructured text,	1
5.3 5.4	Episode rule discovery for texts, hierarchy of categories, text clustering	1
5.4 5.5		1
	Introduction; Temporal Data Mining, Temporal Association Rules	
5.6	Sequence Mining, GSP algorithm, SPADE	1
5.7	SPIRIT Episode Discovery, Time Series Analysis	1
5.8	Spatial Mining, Spatial Mining Tasks	1
5.9	Spatial Clustering. Data Mining Applications	1
	Course Designers	

Mr.S.Raja (<u>rajas@ksrct.ac.in</u>)

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2 %

	60 PDS E14	Credit
60 PDS E14Distributed SystemsDistributed Systems		3

- To learn the principles, architectures, algorithms and programming models used in distributed systems.
- To examine the message ordering and group communication of distributed systems
- To gain knowledge of distributed mutual exclusion and deadlock detection algorithms
- To understand the significance of agreement, fault tolerance and recovery protocols in distributed systems
- To learn the characteristics of peer-to-peer and distributed shared memory systems

Prerequisite

Basic knowledge of Operating System, Computer Networks

Course Outcomes

On the successful completion of the course, students will be able to

C01	Understand the principles, architectures, algorithms and programming models used in distributed systems.	Remember
CO2	Learn issues related to clock Synchronization and the need for global state indistributed systems	Analyse
CO3	Design and implement distributed mutex and deadlock detection algorithms	Apply
CO4	Design and implement the significance of agreement, fault tolerance and recovery protocols in distributed Systems	Apply
CO5	Learn the characteristics of peer-to-peer and distributed shared memory systems	Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	2	2	2	2			
CO2	3	3	3	3	3	2			
CO3	2	3	2	2	2	2			
CO4	3	3	3	3	3	2			
CO5	3	3	3	3	3	3			
3-Strong; 2-Medium; 1-Some									

Bloom's Category	Continuous Asse	End Sem Examination	
Biooni s Category	1	2	(Marks)
Remember(Re)	10	10	-
Understand (Un)	20	20	20
Apply (Ap)	20	30	40
Analyze (An)	10	-	40
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

		K.S.Rangas	amy Colleg	e of Technolog	gy – Autonon	nous R2022		
				- Distributed				
				on to all Branc		1	Maximum Ma	
Semester		Hours/Week	C P	Total hrs	Credit		Maximum Ma	1
	L 3	Т 0	Р 0	45	C 3	CA 40	ES 60	Total 100
systems – M communica of distribute	lessage-pass tion –Synchron d computation tion networks	ing systems nous versus s: A distribut	versus share asynchronou ted program	em components ed memory systeus us executions – –A model of dis ast and future co	ems –Primitiv Design issues tributed exect	es for distrib and challen utions –Mode	uted ges. A model els of	[9]
Message or with synchro communica	onous commu tion – Causal	oup commun nication –Sy order (CO) –	nchronous p · Total order.	sage ordering p rogram order or Global state an shot algorithms	n an asynchro Id snapshot re	nous system	n –Group	[9]
Distributed Agrawala al distributed s	gorithm – Mae systems: Introd	on algorithm ekawa's algo duction – Sys	rithm – Suzu stem model -	on – Preliminario uki–Kasami's bro – Preliminaries - nodel, the AND i	badcast algori -Models of de	ithm. Deadlo eadlocks – Ki	ck detection ir	[9]
recovery -	Checkpoint-b	ased recove	ery – Log-b	on – Backgrou ased rollback i ting and recover	recovery - C			[9]
Peer-to-pee Content ade	dressable net	and overlay works – Tap	oestry. Distril	troduction – Da buted shared m tual Exclusion.				[9]
							Total Hours	45
	,			I. Distributed co	mputing: princ	ciples, algorit	hms, and syst	ems.
	ge Coulouris, o n, Pearson Ec			Kindberg, Distrik	outed System	s Concepts a	and Design, Fi	fth
Reference(
	sh Singhal an			stems: Concept Advanced conc				
3. Tane				Systems: Princ				n, 200
				and Applications	5, Pearson Ed	lucation. 200	4.	

R.P-M

CHAIRMAN BOARD 0F STUDIES Department of information Tech K.S.Rangasamy College of Tec Tiruchengode 637 215

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Definition – Relation to computer system components	1
1.2	Motivation – Relation to parallel systems	1
1.3	Message-passing systems versus shared memory systems	1
1.4	Primitives for distributed communication	1
1.5	Synchronous versus asynchronous execution - Design issues and challenges	1
1.6	A model of distributed computations: A distributed program	1
1.7	A model of distributed executions -Models of communication networks	1
1.8	Global state – Cuts – Past and future cones of an event	1
1.9	Models of process communications	1
2	Message ordering & Snapshots	
2.1	Message ordering and group communication	1
2.2	Message ordering paradigms	1
2.3	Asynchronous execution with synchronous communication	1
2.4	Synchronous program order on an asynchronous system	1
2.5	Group communication	1
2.6	Causal order (CO) - Total order	1
2.7	Global state and snapshot recording algorithms	1
2.8	Introduction –System model and definitions	1
2.9	Snapshot algorithms for FIFO channels	1
3	Distributed mutex & Deadlock	
3.1	Distributed mutual exclusion algorithms: Introduction	1
3.2	Preliminaries – Lamport's algorithm	1
3.3	Ricart-Agrawala algorithm	2
3.4	Maekawa's algorithm	1
3.6	Deadlock detection in distributed systems: Introduction	1
3.7	System model – Preliminaries	1
3.8	Models of deadlocks – Knapp's classification	1
3.9	Algorithms for the single resource model the AND model and the OR model	1
4	Deep Learning for Biomedical Data Analysis	
4.1	Check pointing and rollback recovery: Introduction	1
4.2	Background and definitions	2
4.3	Issues in failure recovery	2
4.4	Check point based recovery	1
4.5	Log based rollback recovery	1
4.6	Coordinated check pointing algorithm	1
4.7	Algorithm for asynchronous checkpointing and recovery	1

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 215

5	P2P& Distributed shared memory	
5.1	Peer-to-peer computing and overlay graphs: Introduction	1
5.2	Data indexing and overlays- Chord	1
5.3	Content addressable networks	1
5.4	Tapestry	1
5.5	Distributed shared memory	2
5.6	Abstraction and advantages	1
5.7	Memory consistency models	1
5.8	Shared memory Mutual Exclusion.	1
	Total	45

Dr.M.Sangeetha - sangeetham@ksrct.ac.in

	Software Engineering for Data Science	Category	L	Т	Ρ	Credit
60 PDS E15	Software Engineering for Data Science	PE	3	0	0	3

- To learn about agile and modern techniques of software development.
- To acquire the knowledge of requirements analysis, software design and UML diagrams.
- To learn the basics of system design and object design
- To acquire the knowledge of testing and rationale management
- To learn the basics of software configuration management and project management

Prerequisite

Basic knowledge of Software Engineering for Data Science

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Analyse and choose appropriate process model and represent the given software project scenario.	Analyse
CO2	Understand the requirements and develop suitable requirement model.	Understand
CO3	Create the software architecture model based on requirements gathered.	Create
CO4	Evaluate the different quality assurance strategies and testing methods.	Evaluate
CO5	Apply the Software Configuration Management and Model Configuration management for WebApps using different tools.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	2	2	2
CO2	3	3	3	3	2	3
CO3	2	3	2	2	2	2
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
B-Strong; 2-Med	dium; 1-Some	-		•	-	•

Bloom's Cotonom.	Continuous Asse	End Sem Examination	
Bloom'sCategory	1	2	(Marks)
Remember(Re)	00	00	00
Understand (Un)	40	00	40
Apply (Ap)	20	30	30
Analyze (An)	00	20	20
Evaluate(Ev)	00	00	00
Create (Cr)	00	10	10

K.S.Rangasamy College of Technology – Autonomous R2022										
				5 - Softwar	e Engineering	for Data				
		ſ			Fech Data Sci	r				
Sei	mester		Hours / Wee		Total hrs	Credit		laximum Mark		
00		L	Т	P		C	CA	ES	Total	
<u> </u>		3	0 neering and	0	45	3	40	60	100	
Introduction to Software Engineering – Generic Process model – Perspective process model – Specialized process model – Unified process model – Personal and Team process model – Agile process – Extreme programming – Agile process model – Adaptive Software Development (ASD) – Scrum – Dynamic Systems Development Method (DSDM) – Crystal – Feature Driven Development (FDD) – Lean Software Development (LSD) – Agile Modelling (AM), Agile Unified Process (AUP) – Tool set for the Agile process.										
	•	, 0	Û (<i>,,</i> 0	· · · · · · · · · · · · · · · · · · ·	,		0		
Software Requirements Analysis and Modeling Requirements Engineering – Eliciting requirements – Developing use cases – Building the requirement model – Negotiating requirements – validating requirements – Scenario based modelling – UML models – Data modelling – Class based, Flow oriented and Behavioural modelling – Patterns for requirement modelling – Requirement modelling for WebApps.									s – [9]	
		s and Princ		••						
Archite level d Interfac WebAp	ctural style esign for ce Design op design -	es – Architeo WebApps – – Golden	ctural design Designing rules – Inte ramid – Aesi	 Compone traditional c rface analy 	del – Software ent – Designing components – (vsis and desig n – Content des	class bas Componer n steps –	ed compone nt based dev WebApp In	nts – Compone elopment - Us terface desigr	ent ser [9] n -	
			e and Testir	na						
Elemer Engine standa strateg WebAp	nts of Sof ering – M rds – SQ ies for co ops – Valid	tware Qual leasures of A plan – S nventional s lation testing	ity Assurand software re Strategic app software – T g – System T	ce – SQA eliability an proach to s est strategi esting – Art	tools, goals a d availability - software testing ies for Object t of Debugging. standard testing	 Software g – Verific oriented s 	e safety – Is cation and v	SO 9000 qua validation – Te	lity est [9]	
		uration Ma		,		/				
Softwa control WebAp	re Configu - Change ops – Cont	uration Mana e control – ent manage	agement – Configurati ment – Char	on control	f SCM - SCM – Status repo ement – Versior such as Ansible	orting - Co n control –	onfiguration Auditing and	management reporting.		
Hours		•	<u> </u>			, U		Total	45	
Text b	ook(s):									
1. 2.				ering, Pear	<pre>x practitioner's A son Education ference(s):</pre>			AcGraw-Hill, 2	014.	
1.	Pankai Ja	lote- An Inte	egrated Appr		itware Engineer	ring, Spring	ger Verlag, 2	008.		
2.	James F		Nitold Pedry		re Engineering				iley and	
3.		wal and Yog		'Software E	ngineering", Ne	ew Age Inte	ernational Pu	blishers, 3 rd		
4.			.org/learn/so	ftware-proc	esses					
5.					-engineering-fo	r-data-scie	entists-in-pyth	ion		
6.			rses/106/10 ²							
7.					ring-introductio	n				
C			Lecture Sch							
S.No).				Торіс			No.d	of Hours	
1	Introd	uction Softv	ware Engine	ering and	Process Mode	ls				
1.1	Introdu	ction to Soft	tware Engine	ering					1	
L	I							I		

R.P-M

BOA OF STI K.S.Rangasamy Tiruchen

1.2	Generic Process model ,Perspective process model	1
1.3	Specialized process model, Unified process model	1
1.4	Personal and Team process model	1
1.5	Agile process , Extreme programming	1
1.6	Agile process model , Adaptive Software Development (ASD)	1
1.7	Scrum , Dynamic Systems Development Method (DSDM)	1
1.8	Crystal, Feature Driven Development (FDD), Lean Software Development (LSD)	1
1.9	Agile Modelling (AM), Agile Unified Process (AUP), Tool set for the Agile process.	1
2	Software Requirements Analysis and Modeling	
2.1	Requirements Engineering , Eliciting requirements	1
2.2	Developing use cases	1
2.3	Building the requirement model	1
2.4	Negotiating requirements ,validating requirements	1
2.5	Scenario based modelling , UML models	1
2.6	Data modelling	1
2.7	Class based, Flow oriented and Behavioral modeling	1
2.8	Patterns for requirement modeling	1
2.9	Requirement modelling for WebApps	1
3	Design Concepts and Principles	
3.1	Design process, Design concepts, Design model	1
3.2	Software architecture, Architectural genres	1
3.3	Architectural styles, Architectural design	1
3.4	Component, Designing class based components, Component level design for WebApps	1
3.5	Designing traditional components, Component based development	1
3.6	User Interface Design, Golden rules, Interface analysis and design steps	1
3.7	WebApp Interface design , WebApp design	1
3.8	Design pyramid , Aesthetic design , Content design	1
3.9	Architectural design, Navigation design, Component level design	1
4	Software Quality Assurance and Testing	
4.1	Elements of Software Quality Assurance, SQA tools, goals and metrics	1
4.2	Six sigma for Software Engineering , Measures of software reliability and availability	1
4.3	Software safety , ISO 9000 quality standards	1
4.4	SQA plan , Strategic approach to software testing	1
4.5	Verification and validation, Test strategies for conventional software	1
4.6	Test strategies for Object oriented software	1
4.7	Test strategies for WebApps	1
4.8	Validation testing , System Testing	1

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2*5

4.9	Art of Debugging.	1
5	Software Configuration Management	
5.1	Software Configuration Management, Elements of SCM	1
5.2	SCM Repository , SCM Process	1
5.3	Version control, Change control	1
5.4	Configuration control	1
5.5	Status reporting	1
5.6	Configuration management for WebApps	1
5.7	Content management, Change management	1
5.8	Version control	1
5.9	Auditing and reporting.	1
	Total	45

Ms.R.Loga priya(logapriyar@ksrct.ac.in)

BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tinichengode 637 215

60 PDS E21	Advanced Algorithms and Optimization	Category	L	Т	Р	Credit
00 FD3 E21	Advanced Algorithms and Optimization	PE	3	0	0	3

- To analyse the asymptotic performance of algorithms.
- To study the concepts of graph and greedy algorithm
- To synthesize efficient algorithms in common engineering design situations.
- To apply important algorithmic design paradigms
- To study methods of analysis

Prerequisite

Data Structure, Design and Analysis of Algorithms

Course Outcomes

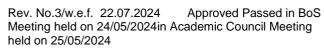
On the successful completion of the course, students will be able to

CO1	Analyse algorithms to determine algorithm correctness and time efficiency	Analyse
CO2	Compare a variety of advanced data structures and their implementations	Understand
CO3	Apply a variety of different algorithm design techniques	Apply
CO4	Apply and implement the learnt algorithm design techniques to solve problems	Apply
CO5	Discuss the NP completeness problems	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	3	2
CO2	3	2	3	3	3	3
CO3	3	2	3	2	2	2
CO4	3	2	3	3	3	3
CO5	3	2	2	3	3	3

Assessment Pattern								
Bloom's Category	Continuous Assess	End Sem						
	1	2	Examination(Marks)					
Remember(Re)	10	10	-					
Understand(Un)	20	20	20					
Apply(Ap)	20	30	40					
Analyse(An)	10	-	40					
Evaluate(Ev)	-	-	-					
Create(Cr)	-	-	-					



			PDS: M	I.Tech Data So	cience				
Hours / Week Tatal km Credit Maximum Marks									
Semester	L	Т	P	Total hrs	С	CA	ES		otal
11	3	0	0	45	3	40	60		00
	I Tractability	/ – Asympto					Matching Algori		[9
Traversal usir Algorithms: In Exchange Arg	Definitions g Queues a terval Scheo gument – Ti	and Applicat Ind Stacks – duling: The (he Minimum	Testing Bipa Greedy Algor Spanning T	irtiteness: An a ithm Stays Ahe	pplication o ead – Optin - Implemen	of Breadth F nal Caching nting Kruska	nplementing Gr irst search Gre : A More Comp al's Algorithm:	edy olex	[9
Divide and C	onquer								
of Points – I Procedure – F Least Squares	nteger Mult Principles of s: Multi-way	iplication Dy Dynamic Pro Choices – S	ynamic Prog ogramming: N Subset Sums	ramming: Weig lemoization or	ghted Inter Iteration ov s: Adding a	val Schedu er Subprob variable – S	ng the Closest I Iling: A Recurs Iems – Segmer Shortest Paths	ive ted	[9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Cł	nteger Mult Principles of a: Multi-way test Paths ar b-Flow Probl noosing Goo	tiplication Dynamic Pro Dynamic Pro Choices – S nd Distance em and the od Augment	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths –	ramming: Weig Aemoization or and Knapsacks cols – Negative on Algorithm –	ghted Inter Iteration ov s: Adding a Cycles in a Maximum	val Schedu er Subprob variable – 3 Graph. Flows and	ɪlïng: A Recurs lems – Segmer	ted n a n a	
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Ch Disjoint Paths NP and Comp Polynomial-Ti	nteger Mult Principles of s: Multi-way test Paths ar h-Flow Probl hoosing God in Directed a putational In me Reduction	Explication Dynamic Pro Choices – S and Distance em and the od Augment and Undirect Intractability ons – Efficie	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs.	ramming: Weig Aemoization or and Knapsacks cols – Negative on Algorithm – A First Applica	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The	val Schedu variable – 3 a Graph. Flows and Bipartite Ma P – NP-Col	uling: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem	ive ted n a n a n –	[9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Cl Disjoint Paths NP and Comp Polynomial-Ti Sequencing P	nteger Mult Principles of s: Multi-way test Paths ar h-Flow Probl hoosing Goo in Directed butational In me Reductio roblems – P	Explication Dynamic Pro Choices – S and Distance em and the od Augment and Undirect Intractability ons – Efficie	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs.	ramming: Weig Aemoization or and Knapsacks cols – Negative on Algorithm – A First Applica	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The	val Schedu variable – 3 a Graph. Flows and Bipartite Ma P – NP-Col	uling: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem	ive ted n a n a n –	[9 [9 [9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Ch Disjoint Paths NP and Comp Polynomial-Ti Sequencing P Fext book(s): 1. Jon Kle	nteger Mult Principles of s: Multi-way test Paths ar h-Flow Probl hoosing Goo in Directed outational In me Reductio roblems – P	Eiplication Dynamic Pro Choices – S and Distance em and the od Augment and Undirect Intractability ons – Efficie Partitioning P	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs. nt Certificatic roblems – Gr	ramming: Weig Memoization or and Knapsacks cols – Negative on Algorithm – A First Applica on and the Defi aph Coloring – , Pearson Edu	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The inition of NI Co-NP and cation Limit	val Schedu er Subprob variable – 3 Graph. Flows and Bipartite Ma P – NP-Col the Asymn ed 2014	Iling: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem netry of NP. Total Ho	ive ted n a n a n – s – urs	[9 [9
of Points – I Procedure – F east Squares Graph – Short Network Flow The Maximum Network – Ch Disjoint Paths NP and Comp Polynomial-Ti Sequencing P Fext book(s): 1. Jon Kle	nteger Mult Principles of S: Multi-way test Paths ar No-Flow Proble noosing Goo in Directed outational In me Reduction roblems – P	Eiplication Dynamic Pro Choices – S and Distance em and the od Augment and Undirect Intractability ons – Efficie Partitioning P	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs. nt Certificatic roblems – Gr	ramming: Weig Memoization or and Knapsacks cols – Negative on Algorithm – A First Applica on and the Defi aph Coloring – , Pearson Edu	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The inition of NI Co-NP and cation Limit	val Schedu er Subprob variable – 3 Graph. Flows and Bipartite Ma P – NP-Col the Asymn ed 2014	uling: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem netry of NP.	ive ted n a n a n – s – urs	[9 [9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Cl Disjoint Paths NP and Comp Polynomial-Ti Sequencing P Text book(s): 1. Jon Kle 2. Thomas Press, 2 Reference(s)	nteger Mult Principles of S: Multi-way sest Paths ar n-Flow Probl noosing Goo in Directed outational Ir me Reductio roblems – P noblems – P s H. Cormen 2009	Eiplication Dynamic Pro Choices – S and Distance em and the od Augmenti and Undirect htractability Das – Efficie Partitioning Pl Fardos, 'Algo , Charles E.	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs. nt Certificatic roblems – Gra prithm Design Leiserson, Re	ramming: Weig Memoization or and Knapsacks cols – Negative on Algorithm – A First Applica on and the Defi aph Coloring – , Pearson Edu- onald L. Rivest	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The inition of NI Co-NP and cation Limit , Clifford Str	val Schedu ver Subprob variable – 3 Graph. Flows and Bipartite Ma P – NP-Cou the Asymn ed 2014 ein, 'Introdu	Jing: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem netry of NP. Total Ho ction to Algorith	ive ted n a n a n – s – urs ms', l	[9 [9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – CH Disjoint Paths NP and Comp Polynomial-Ti Sequencing P Cext book(s): 1. Jon Kle 2. Thomas Press, 2 Reference(s) 1. Ellis Ho Edition,	nteger Mult Principles of S: Multi-way eest Paths ar v n-Flow Probl noosing Goo in Directed outational Ir me Reductio roblems – P <u>inberg, Éva</u> S H. Cormen 2009 Frowitz, Sarta Universities	Eiplication Dy Dynamic Pro Choices – S and Distance em and the od Augment and Undirect htractability ons – Efficie Partitioning P Fardos, 'Algo , Charles E.	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs. nt Certificatic roblems – Gra <u>orithm Design</u> Leiserson, Re Sanguthevar erabad, 2008	ramming: Weig Aemoization or and Knapsacks cols – Negative on Algorithm – A First Applica on and the Defi aph Coloring – ', Pearson Edu onald L. Rivest Rajasekaran, 'f	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The inition of NI Co-NP and cation Limit , Clifford Stu Fundamenta	val Schedu variable – S Graph. Flows and Bipartite M P – NP-Col I the Asymn ed 2014 ein, 'Introdu als of Comp	Iling: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem netry of NP. Total Ho ction to Algorithms	ive ted n a n a n – s – urs ", Sec	[9 [9
of Points – I Procedure – F Least Squares Graph – Short Network Flow The Maximum Network – Ch Disjoint Paths NP and Comp Polynomial-Ti Sequencing P Text book(s): 1. Jon Kle 2. Thomas Press, 2 Reference(s) 1. Ellis Ho Edition, 2. AnanyL 2008.	nteger Mult Principles of s: Multi-way eest Paths ar h-Flow Probl hoosing Goo in Directed in Directed outational In me Reductio roblems – P h-Flow Probl hoosing Goo in Directed outational In me Reductio roblems – P h-Flow Probl hoosing Goo in Directed outational In me Reductio roblems – P h-Flow Probl hoosing Goo in Directed outational In me Reductio roblems – P hoosing Goo in Directed roblems – Saturational inberg, Éva inberg, Éva s H. Cormen 2009 : rowitz, Sarta Universities evitin, 'Introd	Eiplication Dynamic Pro Choices – S and Distance em and the od Augment and Undirect Intractability ons – Efficie Partitioning P Fardos, 'Algo , Charles E.	ynamic Prog ogramming: N Subset Sums Vector Protoc Ford-Fulkers ing Paths – ted Graphs. nt Certificatic roblems – Gr orithm Design Leiserson, Re Sanguthevar erabad, 2008 e Design and	ramming: Weig Aemoization or and Knapsacks cols – Negative on Algorithm – A First Applica on and the Defi aph Coloring – , Pearson Edu onald L. Rivest Rajasekaran, 'F Analysis of Alg	ghted Inter Iteration ov s: Adding a Cycles in a Maximum ation: The inition of NI Co-NP and cation Limit , Clifford Str Fundamenta jorithms', Th	val Schedu er Subprob variable – 3 Graph. Flows and Bipartite Ma P – NP-Col the Asymn ed 2014 ein, 'Introdu als of Comp hird Edition,	Jing: A Recurs lems – Segmer Shortest Paths Minimum Cuts atching Probler mplete Problem netry of NP. Total Ho ction to Algorith	ive ted n a n a n – s – urs ', Sec	[9 [9

CHAIRMAN BOARD OF STUDIES Department of information Tec K.S.Rangasamy College of Tec Tiruchengode 637 2% ge of Tech 637 215

S.No.	Contents and Lecture Schedule Topic	No.of Hours
1	Basics of Algorithm Analysis	
1.1	Computational Tractability	1
1.2	Asymptotic Order of Growth	1
1.3	Implementing the Stable Matching Algorithm	1
1.4	Implementing the Stable Matching Algorithm Using Lists	1
1.5	Implementing the Stable Matching Algorithm Using Arrays	1
1.6	A survey of common running times	1
1.7	A more Complex Data Structure	1
1.8	Priority Queues	1
1.9	Priority Queues Types	1
2	Graphs and Greedy Algorithms	
2.1	Basic Definitions and Applications	1
2.2	Graph connectivity and Graph traversal	1
2.3	Implementing Graph Traversal using Queues and Stacks	1
2.4	Testing Bipartitions: An application of Breadth First search	1
2.5	Interval Scheduling - The Greedy Algorithm Stays Ahead	1
2.6	Optimal Caching: A More Complex Exchange Argument	1
2.7	The Minimum Spanning Tree Problem	1
2.8	Implementing Kruskal's Algorithm: The Union-Find Data Structure	1
2.9	Clustering – Huffman Codes and Data Compression	1
3	Divide and Conquer	
3.1	The Merge sort Algorithm	1
3.2	Further Recurrence Relations – Counting Inversions	1
3.3	Finding the Closest Pair of Points	1
3.4	Integer Multiplication Dynamic Programming: Weig+hted Interval Scheduling: A Recursive Procedure	1
3.5	Principles of Dynamic Programming: Memorization or Iteration over Sub problems	1
3.6	Segmented Least Squares: Multi-way Choices	1
3.7	Subset Sums and Knapsacks: Adding a variable	1
3.8	Shortest Paths in a Graph – Shortest Paths and Distance Vector Protocols	1
3.9	Negative Cycles in a Graph	1
4	Network Flow	
4.1	The Maximum Flow Problem	1
4.2	Fulkerson Algorithm	1
4.3	Maximum Flows in a Network	1
4.4	Minimum Cuts in a Network	1

R.P-M

CHAIRMAN BOARD ÖF STUD Department of Information K.S.Rangasamy College of Tiruchengode 637

5.7	Partitioning Problems	1
5.5 5.6	NP-Complete Problems Sequencing Problems	1
5.4	Definition of NP	1
5.3	Efficient Certification	1
5.2	Time Reductions	1
5.1	Polynomial	1
5	NP and Computational Intractability	
4.9	Disjoint Paths in Undirected Graphs	1
4.8	Disjoint Paths in Directed Graphs	1
4.7	The Bipartite Matching Problem	1
4.6	A First Application	1
4.5	Choosing Good Augmenting Paths	1

Mr.K.Saravanan (saravanank@ksrct.ac.in)

	Intelligent Database Systems	Category	L	Т	Ρ	Credit
00 FD3 E22	0 PDS E22 Intelligent Database Systems		3	0	0	3
Objective(s)					

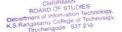
- To learn NoSQL databases into web applications.
- To deploy analytical databases for OLAP and OLTP.
- To understand semi- structured data and to process XML data.
- To learn data warehouse.
- To understand some key concepts of data science.

Prerequisite

Database systems, SQL, XML, Data Science

Course Outcomes

On the successful completion of the course, studentswill beable to


CO1	Understand basic concept of database systems	Remember
CO2	Apprehend the basics of MySQL.	Understand
CO3	Apply dimensional modeling, star schemas, and ETL (extract-transform-load) for a data warehouse.	Apply
CO4	Ability of XML file format for storing, transmitting, and reconstructing arbitrary data.	Apply
CO5	Understand some key concepts of data virtualization	Understand

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	2	2
CO2	2	3	3	3	3	2
CO3	2	2	3	2	2	2
CO4	2	3	3	3	3	2
CO5	2	3	3	2	3	2
-Strong; 2-Med	dium; 1-Some					

Bloom's Category	Continuous Assess	End Sem	
	1	2	Examination(Marks)
Remember (Re)	30	20	20
Understand (Un)	30	20	40
Apply (Ap)	-	20	40
Analyse (An)	-	-	-
Evaluate (Ev)	-	-	-
Create (Cr)	-	-	-

					e of Technology ntelligent Data					
			00		I.Tech Data So					
0			Hours / Wee			Credit		Maximum Mar	ks	
Sem	nester	L	Т	Р	Total hrs 45	C 3	CA 40	ES 60	Tot	Total 100
		3	0	0					10	
Data ı	modeling	j– Concep		and entity-	-relationship dia emas – Physica				ional	[9]
referer injectio	L Workt	grity constra s - PHP pre	aints - Relati	onal databas	ctional depend ses and web ap ct-relational ma	oplications	 Basic HTM 	IL and PHP -	SQL	[9]
Dimen online	isional m transact	iodeling an	sing (OLTP)	- Analytica	nsion tables and I databases an nt and WordPre	nd online a				[9]
	structure	hae eteb b								
Expres web se		web applic side frame	cations - Mo	ngoDB - Do	tor - XPath and cuments and c actions and H	ollections -	CAP theore	em vs. ACID -	The	[9]
Expres web se Data v Data v RAID -	ss server ervices /irtualiza /irtualizat - Distribu	web applic -side frame tion tion - The (cations – Mo ework - Data Cisco Informa ses - Object	ngoDB - Do base CRUD ation Server	cuments and c	ollections - TTP verbs	CAP theore - The REST	em vs. ACID - API and RES	The STful ery –	
Expres web se Data v Data v RAID - Hadoo	ss server ervices /irtualizat /irtualizat - Distribu op, and N	web applic -side frame tion tion - The (ted databa	cations – Mo ework - Data Cisco Informa ses - Object	ngoDB - Do base CRUD ation Server	actions and C actions and H	ollections - TTP verbs	CAP theore - The REST	em vs. ACID - API and RES	The STful ery – Data,	[9]
Expres web se Data v Data v RAID - Hadoo	ss server ervices /irtualizat /irtualizat - Distribu op, and M	web applic -side frame ition tion - The (ted databa lapReduce	cations – Mo ework - Data Cisco Informa ses - Object	ngoDB - Do base CRUD ation Server databases -	cuments and c actions and H - Query optimi Cloud computir	ollections - TTP verbs ization - Da ng - Data so	CAP theore - The REST atabase failu cience - Data	em vs. ACID - API and RES are and recove a mining- Big I Total H	The STful ery – Data, ours	[9] [9] 45
Expres web se Data v Data v RAID - Hadoo	ss server ervices virtualizat - Distribu op, and M pook(s): Nenad	web applic -side frame tion - The (ted databa lapReduce	cations – Mo ework - Data Cisco Informa ses - Object	ngoDB - Do base CRUD ation Server databases - d SvetlozarN	actions and C actions and H	ollections - TTP verbs ization - Da ng - Data so	CAP theore - The REST atabase failu cience - Data	em vs. ACID - API and RES are and recove a mining- Big I Total H	The STful ery – Data, ours	[9] 45
Express web se Data v Data v RAID - Hadoo Text b	ss server ervices /irtualizat - Distribu op, and M oook(s): Nenad Data W Ralph H	web applic -side frame ition tion - The (ted databa lapReduce Jukic, Susa /arehouses Kimball and	cations – Mo ework - Data Cisco Informa ses - Object n Vrbsky, an ', Prospect P	ngoDB - Do base CRUD ation Server databases - d SvetlozarN ress, 2017	ecuments and c actions and H - Query optimi Cloud computir Nestorov, 'Datab	ollections - TTP verbs ization - Da ng - Data so pase Syster	CAP theore - The REST atabase failu cience - Data	em vs. ACID - API and RES re and recove a mining- Big I Total He tion to Databas	The STful ery – Data, ours ses and	[9] 45
Express web set Data v Data v RAID - Hadoo Text b 1. 2.	ss server ervices /irtualizat - Distribu op, and M oook(s): Nenad Data W Ralph H	web applic -side frame ition tion - The (ted databa lapReduce Jukic, Susa /arehouses Kimball and	cations – Mo ework - Data Cisco Informa ses - Object n Vrbsky, an ', Prospect P I Margy Ross	ngoDB - Do base CRUD ation Server databases - d SvetlozarN ress, 2017	ecuments and c actions and H - Query optimi Cloud computir Nestorov, 'Datab	ollections - TTP verbs ization - Da ng - Data so pase Syster	CAP theore - The REST atabase failu cience - Data	em vs. ACID - API and RES re and recove a mining- Big I Total He tion to Databas	The STful ery – Data, ours ses and	[9] 45
Express web se Data v Data v RAID - Hadoo Text b 1. 2. Refere	ss server ervices virtualizat - Distribu op, and M Dook(s): Nenad Data W Ralph H Wareho ence(s): Hector	web applid -side frame tion - The (ted databa lapReduce Jukic, Susa /arehouses (imball and pusing and Garcia-Mol	cations – Mo ework - Data Cisco Informa ses - Object n Vrbsky, an ', Prospect P I Margy Ross Business Inte lina, Jeffrey D	ngoDB - Do base CRUD ation Server databases - d SvetlozarN ress, 2017 s, 'The Kimba elligence', W	A ctions and c actions and H - Query optimi Cloud computir Nestorov, 'Datab All Group Reade Viley, 2015	ollections - TTP verbs	CAP theore - The REST atabase failu sience - Data	em vs. ACID - API and RES re and recove a mining- Big I Total H tion to Databas	The STful ery – Data, ours ses and ta	[9] 45
Express web se Data v Data v RAID - Hadoo Text b 1. 2.	ss server ervices virtualizat - Distribu op, and M oook(s): Nenad. Data W Ralph H Wareho ence(s): Hector Secono Abraha	web applid -side frame ion - The (ted databa lapReduce Jukic, Susa /arehouses /arehouses /imball and busing and Garcia-Mol d edition', P	cations – Mo ework - Data Cisco Informa ses - Object n Vrbsky, an ', Prospect P I Margy Ross Business Inte Business Inte lina, Jeffrey D earson Prent hatz, Henry F	ngoDB - Do base CRUD ation Server databases - d SvetlozarN ress, 2017 s, 'The Kimba elligence', W D. Ullman, ar tice Hall, 200	A ctions and c actions and H - Query optimi Cloud computir Nestorov, 'Datab All Group Reade Viley, 2015	ollections - TTP verbs ization - Da ng - Data so pase Syster er: Relentles dom, 'Datal	CAP theore - The REST atabase failu cience - Data ms: Introduct ssly Practica pase System	em vs. ACID - API and RES a mining- Big I Total H tion to Databas I Tools for Data ns: The Compl	The STful ery – Data, ours ses and ta ete Boo	[9] 45
Express web set Data v Data v RAID - Hadoo 1. 2. Refere 1.	ss server ervices virtualizat - Distribu op, and M Data W Ralph H Wareho ence(s): Hector Second Abraha McGrav	web applid -side frame tion - The (ted databa- lapReduce Jukic, Susa /arehouses (imball and busing and Garcia-Mol d edition', P m Silberscl w-Hill, 2017	cations – Mo ework - Data Cisco Informa ses - Object n Vrbsky, and ', Prospect P I Margy Ross Business Inte Business Inte lina, Jeffrey D earson Prent hatz, Henry F 7.	ngoDB - Do base CRUD ation Server databases - d SvetlozarN ress, 2017 a, 'The Kimba elligence', W D. Ullman, ar tice Hall, 200 5. Korth and	Actions and c actions and H - Query optimi Cloud computir Vestorov, 'Datab All Group Reade Viley, 2015	ollections - TTP verbs ization - Da ng - Data so pase System er: Relentles dom, 'Datal	CAP theore - The REST atabase failu- sience - Data ms: Introduct ssly Practica base System System Cond	em vs. ACID - API and RES re and recove a mining- Big I Total H tion to Databas I Tools for Dat ns: The Compl cepts", SixthEo	The STful ery – Data, ours ses and ta ete Boo dition,	[9] 45

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Overview of Intelligent Database Systems	
1.1	Data modeling	1
1.2	Conceptual models	1
1.3	Entity-relationship diagrams	1
1.4	Logical models	1
1.5	Relational schemas	1
1.6	Mapping ER diagrams to relational schemas	1
1.7	Physical data models	1
1.8	PhpMyAdmin	1
2	MySQL	
2.1	MySQL Workbench	1
2.2	Update anomalies	1
2.3	Functional dependencies and normalization	1
2.4	Entity and referential integrity constraints	1
2.5	Relational databases and web applications	1
2.6	Basic HTML and PHP	1
2.7	SQL injection attacks	1
2.8	PHP prepared statements	1
2.9	Object-relational mapping (ORM)	1
2.10	PHP Data Objects (PDO)	1
3	Data Warehousing	
3.1	Dimensional modeling and star schemas	1
3.2	Dimension tables and fact tables	1
3.3	Operational databases and online transaction processing (OLTP)	2
3.4	Analytical databases and online analytical processing (OLAP)	1
3.5	Extract-transform-load (ETL)	2
3.6	Content management and WordPress	1
4	ХМС	
4.1	Semi-structured data and XML	1
4.2	Oxygen XML Editor	1
4.3	XPath and XQuery	1
4.4	FLWOR expressions	1
4.5	NoSQL databases and web applications	1
4.6	MongoDB - Documents and collections	1
4.7	CAP theorem vs. ACID	1
4.8	The Express server-side framework	1
4.9	Database CRUD actions and HTTP verbs	1
4.10	The REST API and RESTful web services	
5	Data Virtualization	
5.1	Data virtualization - The Cisco Information Server	1
5.2	Query optimization	1
5.3	Database failure and recovery	1
5.4	RAID	1
5.5	Distributed databases and Object databases	1
5.6	Cloud computing	1
5.7	Data science	1
5.8	Data mining- Big Data, Hadoop, and MapReduce	2
	Total	45

Ms. P. Ranjetha- ranjetha@ksrct.ac.in

60 PDS E23	Natural Language Processing and Text Mining	Category	L	Т	Р	Credit	
00 FD3 E23	Natural Language Processing and Text Minning	PE	3	0	0	3	1

- To Understand Basics of Linguistics and Probability and Statistics ٠
- To Study Concept of Syntax, Statiscal Approaches to Machine Translation •
- To Learn Deep Learning for NPL •
- To Study Basic of Text Mining ٠
- To Learn Resources of Text Mining and Applications •

Prerequisite

Data Mining, Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand Basics of Linguistics and Probability and Statistics.	Understand
CO2	Explain Syntax Semantics Machine Learning Techniques used.	Apply
CO3	Analysing Deep Learning for NLP	Analyse
CO4	Identity the Concepts of Text Mining	Analyse
CO5	Discuss Different Text Mining Applications	Remember

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	3	2
CO2	3	2	2	3	3	3
CO3	3	2	3	2	2	2
CO4	3	2	2	3	3	3
CO5	3	2	3	3	3	3
3-Strong; 2-Me	dium; 1-Some		•	•	•	•

Assessment Pattern Bloom's Category	Continuous (End Sem	
	1	2	Examination(Marks)
Remember(Re)	20	10	30
Understand(Un)	20	20	30
Apply(Ap)	20	20	30
Analyse(An)	-	10	10
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

	ŀ	.S.Rangasa	amy College	of Technolog	y – Autono	omous R202	2		
			- Natural La	anguage Proce	essing and				
				I.Tech Data So	1	-	<u> </u>		
Semes	ter	Hours / Wee		Total hrs	Credit		Maximum Marl		
	L 3	Т0	P 0		C 3	CA	ES		otal
Introduct	-	0	0	45	3	40	60	10	00
Introduction	on to Natural Lar stics – Words –								[9]
N-Grams Labiling -	nd Algorithms and Language M - Part of Speech – Tree Banks.								[9]
Word Se Parsing -	ncy Parsing nse Disambigua - Statistical Mac n, Sentiment Anal	hine Transa							[9]
	ng on to Text Minir ion – Evaluation			ine – Approacl	hes to Te	xt Mining –	Data Mining	and	[9]
Resource	and Application s for Text Minion ns and Services	g – Distribu		ning – Scalab	le Text M	ining System	ıs – Text Mir	ning	[9]
							Total Ho	ours	45
Text boo									
1. Lar Ind	niel Jurafsky an iguage Processir ia. 2013.	ng, Computa	ational Lingui	istics and Spee	ch Recogr	nition', 2 nd Ec	lition, Pearsor	n Educ	ation
	dman and Rone mbridge Universit			dbook: Advand	ced Approa	aches in ana	lyzing unstruc	ctured (data'
Referenc	<u>, , , , , , , , , , , , , , , , , , , </u>								
	n Indurkhya, Fred								
^{2.} Cla	avGoldberg, Grae ypool Life Scienc	es, 2017				0 0	C C	U	
	epti Chopra, Nis iited,2016	hrrth Joshi,	'Mastering	Natural Langua	age Proce	ssing with P	ython', Packt	Publis	shing
4. 'Te	xt Mining for Biolo	ogy and Bior	nedicine', Ar	tech House, 20	06				

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Introduction to Natural Language	1
1.2	Fundamentals of Natural Language	1
1.3	Basics of Linguistics	1
1.4	Probability and Statistics	1
1.5	Words	1
1.6	Tokenization – Morphology	1
1.7	Finite State Automata	1
1.8	Spelling Correction	1
1.9	Statistical NLP.	1
2	Models and Algorithms	
2.1	N-Grams and Language Models	1
2.2	Text Classification – Naive Bayes	1
2.3	Vector Space Models	1
2.4	Sequence Labeling – Part of Speech Tags	1
2.5	Hidden Markov Models	1
2.6	Syntax Analysis	1
2.7	CYK Algorithm	1
2.8	Earley's Algorithm	1
2.9	Tree Banks	1
3	Dependency Parsing	
3.1	Word Sense Disambiguation	1
3.2	Word Net	1
3.3	Dependency Parsing Semantic Role Labeling	1
3.4	Semantic Parsing	1
3.5	Statistical Machine Translation	1
3.6	Deep Learning for NIp	1
3.7	Word Embedding	1
3.8	Information Extraction	1
3.9	Sentiment Analysis	1
4	Text Mining	
4.1	Introduction	1
4.2	Text Mining	1
4.3	Text Mining Pipeline	1
4.4	Approaches to Text Mining	1
4.5	Data Mining	1
4.6	Data Mining techniques	1

P.P-M

CHAIRMAN BOARD ÖF STUDIES Department of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 215

4.7	Visualization	1
4.8	Visualization techniques	1
4.9	Evaluation of Text Mining Systems	1
5	Systems and Application	
5.1	Introduction	1
5.2	Resources for Text Mining	1
5.3	Distributed Text Mining	1
5.4	Distributed Text Mining Types	1
5.5	Scalable Text Mining Systems	1
5.6	Text Mining Applications	1
5.7	Text Mining Services	1
5.8	Text Mining Methods	1
5.9	Case Studies.	1
	Total	45

Course Designers

Mr.K.Saravanan (saravanank@ksrct.ac.in)

CHAIRWAY BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

60 PDS E24	Time Series Analysis and Ferenesting	Category	L	Т	Ρ	Credit
00 PD3 E24	Time Series Analysis and Forecasting	PE	3	0	0	3

• To describe the fundamental advantage and necessity of forecasting in various situations.

• To show a changing variable that regresses on its own lagged, or prior, values.

- To represent the differencing of raw observations to allow for the time series to become stationary
- To incorporate the dependency between an observation and a residual error from a moving average model applied to lagged observations.
- To understand Time Series sequence of numerical data points in successive order

Prerequisite

Basic knowledge of Higher Secondary Mathematics, Python.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the fundamentals and necessities of forecasting in various situations.	Understand
CO2	Identify how to choose an appropriate forecasting method in a particular environment.	Remember
	Apply various forecasting methods, which include obtaining the relevant data and	<u> </u>
CO3	carrying out the necessary computation using suitable statistical software	Apply
CO4	Improve forecast with better statistical models based on statistical analysis	Apply
CO5	Analyse several different types of time series data for forecasting purposes.	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	3	2	2	2	3	
CO2	3	2	3	2	3	2	
CO3	3	1	2	2	2	2	
CO4	2	2	2	2	3	3	
CO5	2	1	2	2	3	3	
B-Strong; 2-Medium; 1-Some							

Assessment Pattern

Plaam'a Catagony	Continuous Ass	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	30	-	20
Understand (Un)	30	30	20
Apply (Ap)	-	30	30
Analyse (An)	-	-	30
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

	k	(.S.Rangasa	amy College	of Technolog	y – Autono	mous R202	2	
		60 PDS		Series Analysi		ecasting		
				I.Tech Data So	cience			
Semeste	or	Hours / Wee		Total hrs	Credit		Maximum Marks	
Gemesu		Т	P	10101113	C	CA	ES	Total
	3	0	0	45	3	40	60	100
	ion and Regress							
	uction to Foreca				ods-Errors	in Forecas	ting-Forecasting	
	An Overview o				Б.			[9]
	n Analysis: Sim							
	ctions- Model As							
	Confidence and				of Determin	nation and C	Jonelation	
	ilding and Resident inear Regression					or and the	Standard Error	
	ity: R2, Adjusted				Square En		Stanuaru Enor-	
	ilding and Resid				Effects of	Multicolline	arity - Residual	[9]
	n Simple Regres							
Observatio			inipio riogioi	Bolon Blaghood			g and miderial	
	es Analysis and	d Exponenti	al Smoothir	าต				
	es Regression:				I Functions	s-Detecting	Autocorrelation-	
	Seasonal Vari							
Trigonome	etric Functions -	Growth Curv	es - Handlin	g First-Order Au	utocorrelatio	on.		[0]
Decompos	sition Methods: I	Multiplicative	and Additiv	e Decompositi	on- X-12-A	RIMA Sease	onal Adjustment	[9]
Method - E								
	al Smoothing:						rend Corrected	
	al Smoothing -He			mped Trends a	nd Other E	xponential		
	onal Box-Jenki		•	Tentetine Islandi			- Newstations.	
	onal Box-Jenkin							
	es - Sample and Modelling and Fo							[9]
	, Diagnostic Ch							
	Checking – For							
	Box-Jenkins M						illar enriceannigi	
	ns Seasonal Mo		nsforming a	Seasonal Time	Series inte	o a Stationa	ry Time Series-	
	- Box-Jenkins Er						,	
	Box-Jenkins Mo					for Tentative	e Identification -	[9]
	on Models - Proc							
	in time series:		usality- Hype	othesis testing	on rationa	l expectation	ns - Hypothesis	
testing on	market efficiency	у.						
-	()						Total Hours	45
Text book		Dishan		Anna Kaablan	" F a wa a a a tin			44
1.	Bruce L. Bower	man, Richar					ies, and Regres	sion, 4th
2. F	D Prookwall F			engage Unlimite			aor 2016	
Z. Γ Reference	P. J. Brockwell, F	K. A. Davis,	Introduction			isting spring	Jel, 2010	
(-(s). Cryer, Jonathan I	D · Chan Ki	Ina-sik "Tim	e series analvei	s · with ann	lications in F	R" ed · New Vor	k.
	Springer, cop. 20		ing-six, 1111	c series analysi	ο. Μαι αρμ		·, cu INCW TU	κ.
	Mills, T.C. The Ed		Andelling of	Financial Time 9	Series Can	nbridae Univ	ersity Press 10	99
	Andrew C. Harve						5.0kg 1 1000, 19	
	Enders W. Applie							
					a cono, m	., 1000		

ROA D OF STL Department of Info K.S.Rangasamy Co Tiruchenao

	Irse Contents and Lecture Schedule	
S.No.	Торіс	No.of Hours
1	Introduction and Regression Analysis	
1.1	An Introduction to Forecasting- Forecasting Data and its methods - Errors in Forecasting	1
1.2	Forecasting Technique - An Overview of Quantitative Forecasting Techniques	1
1.3	An Introduction to Regression Analysis - Simple Linear Regression Model	1
1.4	Least Squares Point Estimates	1
1.5	Point Estimates and Predictions	1
1.6	Model Assumptions and the Standard Error	1
1.7	Testing the Significance of the Slope and y Intercept	1
1.8	Confidence and Prediction Intervals	1
1.9	Simple Coefficients of Determination and Correlation	1
2	Model Building and Residual Analysis of Linear Regressions	
2.1	Linear Regression Model	1
2.2	Mean Square Error and the Standard Error	1
2.3	Model Utility: R2, Adjusted R2	1
2.4	the Overall F Test	1
2.5	Introduction to Model Building and Residual Analysis	1
2.6	Building and the Effects of Multicollinearity	1
2.7	Model	1
2.8	Residual Analysis in Simple Regression and Multiple Regression	1
2.9	Diagnostics for Detecting Outlying and Influential Observations	1
3	Time Series Analysis and Exponential Smoothing	
3.1	Time Series Regression: Modelling Trend by Using Polynomial Functions	1
3.2	Detecting Autocorrelation - Types of Seasonal Variation	1
3.3	Modelling Seasonal Variation by Using Dummy Variables and Trigonometric Functions	1
3.4	Growth Curves - Handling First-Order Autocorrelation	1
3.5	Multiplicative and Additive Decomposition	1
3.6	X-12-ARIMA Seasonal Adjustment Method - Exercises.	1
3.7	Simple Exponential Smoothing- Tracking Signals	1
3.8	Holt's Trend Corrected Exponential Smoothing -Holt-Winters Methods	1
3.9	Damped Trends and Other Exponential	1
4	Non-Seasonal Box-Jenkins Modelling	
4.1	Introduction to Non-seasonal Box-Jenkins Modelling and Their Tentative Identification	1
4.2	Stationary and Nonstationary Time Series	1
4.3	Sample and Partial Autocorrelation Functions: The SAC and SPAC	1
4.4	Introduction to Non-seasonal Modelling and Forecasting	1
4.5	Tentative Identification of Non-seasonal Box-Jenkins Models	1

R.P-M

CHAIRMAN BOARD ÖF STUDIES Oepartment of Information Technology. K.S.Rangasamy College of Technology. Tinuchengode 537 2 %

	Total	45
5.9	Hypothesis testing on market efficiency	1
5.8	Granger causality- Hypothesis testing on rational expectations	1
5.7	Procedure for Building a Transfer Function Model	1
5.6	Intervention Models	1
5.5	General Seasonal Model and Guidelines for Tentative Identification	1
5.4	Box-Jenkins Error Term Models in Time Series Regression.	1
5.3	Examples	1
5.2	Transforming a Seasonal Time Series into a Stationary Time Series	1
5.1	Box-Jenkins Seasonal Modelling	1
5	Seasonal Box-Jenkins Modelling	
4.9	Box-Jenkins Implementation of Exponential Smoothing.	1
4.8	Forecasting - Case Study	1
4.7	Diagnostic Checking	1
4.6	Estimation	1

Course Designers

Ms.M.Vaishnavi - <u>vaishanavi@ksrct.ac.in</u>

60 PDS E25	Predictive Modeling and Data Analytics	Category	L	Т	Ρ	Credit
00 FD3 E25	Fredictive modeling and Data Analytics	PE	3	0	0	3

- To identify techniques and models associated with Predictive Modeling
- To study the concepts of data mining and preprocessing data techniques
- To apply the clustering model and analysis and its predictive data
- To design an hierarchical clustering using ANOVA
- To implement the application of Predictive Modeling and Data Analytics

Prerequisite

Data Mining, Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the various techniques in predictive modeling	Apply
CO2	Analyze the complexity of data and various methods in data	Analyse
CO3	Apply the various models in predictive of the data	Apply
CO4	Illustrate the methods of clustering in data analytics	Apply
CO5	Analyze the regression trees in data analytics	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	3	2
CO2	3	3	3	3	3	3
CO3	2	2	3	3	3	2
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
	•	3-Stroi	ng; 2-Medium; 1	-Some		•

Accessment Battern

Pleam's Category	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	-	-	-
Understand (Kn)	30	30	20
Apply (Ap)	20	30	40
Analyse (An)	10	-	40
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

		00 F D 3		tive Modeling		inalytics		
	<u> </u>			I.Tech Data So				
Semester		Hours / Week		Total hrs	Credit		Maximum Mark	
	L	<u> </u>	P	45	C	CA	ES	Tot
 Introduction	3	0	0	45	3	40	60	10
Introduction to models – decis	sion models -			ytics: types, apj techniques	olications-p	redictive mo	dels – descript	ive
exploratory d methodology-	nd associate ata analysis cross-validatio	- supervis on overfitti	ed versus	exities of data unsupervised ance trade-off-	methods,	statistical a	ind data min	
Statistical ana model	deling: Proper lysis: Univaria	nsity model		odels, collaborat Aultivariate Stat				
Hypothesis te	o data anal <u>y</u> esting- Two Itiple regress	sample te ion-k-mear	sting and ir is clustering-	nentals-introduc ntroduction to Hierarchical m	ANOVA-Tv	vo way AN	IOVA and lin	ear
	gression-Cas	e Study on	ANOVA			oluotoning		
and Logistic re Regression A ROC and Re analysis-Class	nalysis gression Ana	alysis mod	el building-ci	2 Test and int asure of attribu	roduction t	o cluster a	nalysis-Cluster	ing
and Logistic re Regression A ROC and Re analysis-Class problems in Cl	nalysis gression Ana	alysis mod	el building-ci	2 Test and int	roduction t	o cluster a	nalysis-Cluster	ing me
and Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s)	nalysis gression Ana ification and ustering	alysis mode Regressio	el building-ca n Trees-Mea	2 Test and int asure of attribu	roduction t ite selectio	o cluster a n- Case Sti	nalysis-Cluster udy on real ti Total Ho	ing me
and Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s)	nalysis gression Ana ification and ustering	alysis mode Regressio	el building-ca n Trees-Mea	2 Test and int	roduction t ite selectio	o cluster a n- Case Sti	nalysis-Cluster udy on real ti Total Ho	ing me
And Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s) 1. Jeffrey S	nalysis gression Ana ification and ustering trickland, Pred	Ilysis mod Regressio	el building-c n Trees-Mea ytics using R	2 Test and int asure of attribu	roduction t ite selectio	o cluster a n- Case Str lorado Sprin	nalysis-Cluster udy on real ti Total Ho gs, 2015	ing me
Regression A ROC and Re analysis-Class problems in Cl Text book(s) 1. Jeffrey S 2. Max Kuh	nalysis gression Ana ification and ustering trickland, Pred n and Kjell Jo	Ilysis mod Regressio	el building-c n Trees-Mea ytics using R	2 Test and int asure of attribu , Simulation ed	roduction t ite selectio	o cluster a n- Case Str lorado Sprin	nalysis-Cluster udy on real ti Total Ho gs, 2015	ing me
And Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s) 1. Jeffrey S 2. Max Kuh Reference(s):	nalysis gression Ana ification and ustering trickland, Prea n and Kjell Jo	alysis mode Regressio	el building-c n Trees-Mea ytics using R plied Predictiv	2 Test and int asure of attribu , Simulation ed	roduction t te selectio ucators, Co st edition S	o cluster an n- Case Str lorado Sprin pringer, 201	nalysis-Cluster udy on real ti Total Ho gs, 2015 3.	ing me Irs
And Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s) 1. Jeffrey S 2. Max Kuh Reference(s): 1. Anasse E	nalysis gression Ana ification and ustering trickland, Pred n and Kjell Jo Bari, Mohamed	Ilysis mod Regressio dictive anal hnson, App d Chaouch	el building-c n Trees-Mea ytics using R blied Predictiv	2 Test and int asure of attribu , Simulation edu ve Modeling, Fir	roduction t ite selectio ucators, Co st edition S	o cluster a n- Case Str lorado Sprin pringer, 201 dummies, 2 ⁿ	nalysis-Cluster udy on real ti Total Ho gs, 2015 3. ^{Id} Edition Wiley	ing me Irs
and Logistic re Regression A ROC and Re analysis-Class problems in Cl Text book(s) 1. Jeffrey S 2. Max Kuh Reference(s): 1. Anasse E 2. Dinov, IE 2018.	nalysis gression Ana ification and ustering trickland, Pred n and Kjell Jo Bari, Mohamed D., Data Scier	alysis mode Regressio dictive anal hnson, App d Chaouch nce and Pr	el building-c n Trees-Mea ytics using R plied Predictiv i, Tommy Jur redictive Ana	2 Test and int asure of attribu , Simulation edu ve Modeling, Fin	roduction t tte selectio ucators, Co st edition S nalytics for cal and He	o cluster an n- Case Str lorado Sprin pringer, 201 dummies, 2 ⁿ alth Applicat	nalysis-Cluster udy on real ti Total Ho gs, 2015 3. ^d Edition Wiley tions using R,	ing me Irs , 2016. Spring

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Introduction to predictive analytics	1
1.2	Business analytics	1
1.3	Types	1
1.4	Applications	1
1.5	predictive models	1
1.6	descriptive models	1
1.7	decision models	1
1.8	Applications	1
1.9	analytical techniques	1
2	Understanding Data	
2.1	Data types and associated techniques	1
2.2	complexities of data	1
2.3	Data preparation	1
2.4	Preprocessing	1
2.5	exploratory data analysis- supervised versus unsupervised methods	1
2.6	statistical and data mining methodology	1
2.7	cross-validation over fitting	1
2.8	bias-variance trade-off	1
2.9	balancing the training dataset	1
3	Principles and Techniques	
3.1	Predictive modeling	1
3.2	Propensity models	1
3.3	Cluster model	1
3.4	collaborative filtering	1
3.5	applications	1
3.6	Limitations	1
3.7	Statistical analysis	1
3.8	Univariate Statistical analysis	1
3.9	Multivariate Statistical analysis	1
4	Data Analytics	
4.1	Introduction to data analytics	1
4.2	Python Fundamentals	1
4.3	Introduction to probability	1
4.4	Sample distribution	1
4.5	Hypothesis testing	1
4.6	Two sample testing and introduction to ANOVA	1

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

CHAIRMAN BOARD ÖF STUDIES Department of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 215

4.7	Two way ANOVA and linear regression	1
4.8	multiple regression-k-means clustering	1
4.9	Hierarchical methods of clustering -Concepts of MLE and Logistic regression	1
5	Regression Analysis	
5.1	ROC	1
5.2	Regression Analysis model building	1
5.3	c2 Test	1
5.4	Introduction to cluster analysis	1
5.5	Clustering analysis	1
5.6	Classification	1
5.7	Regression Trees	1
5.8	Measure of attribute selection	1
5.9	Problems on clustering	1
	Total	45

Course Designers Mr.M.Thilakraj(<u>mthilakraj@ksrct.ac.in</u>)

60 PDS E31	Poinforcomont Loarning	Category	L	Τ	Ρ	Credit
00 FD3 E31	Reinforcement Learning	PE	3	0	0	3
Objective(s)						

• To understand the basic mathematical foundations of reinforcement learning

- To impart knowledge on the temporal difference and eligibility traces
- To explore a dynamic programming and Monte-Carlo methods
- To analyze the policy gradient methods
- To develop hierarchical RL frameworks

Prerequisite

Data Mining, Machine Learning

Course Outcomes

At	the end of the course, the students will be able to	
CO1	Identify the reward function and Markov Decision Process	Understand
CO2	Apply temporal difference (TD) learning method for reinforcement learning problem	Apply
CO3	Analyse to Solve problems using Dynamic Programming	Analyse
CO4	Recognize to Gradient methods for Reinforcement Learning	Understand
CO5	Apply Hierarchical Reinforcement Learning Algorithms	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	3	3				
CO2	3	2	3	3	3	3				
CO3	3	2	3	2 2	2					
CO4	3	2	3	3	3	3				
CO5	3	2	2	3	3	3				
3-Strong; 2-Me	3-Strong; 2-Medium; 1-Some									

Assessment Pattern

Bloom's Category	Continu Te	End Sem Examination	
	1	2	(Marks)
Remember(Re)	20	10	10
Understand(Un)	20	20	30
Apply (Ap)	20	20	30
Analyse (An)	-	10	30
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

		r		anny Conege	e of Technolog	y – Autono	mous RZUZ			
				60 PDS E31	- Reinforceme	nt Learning	J			
				PDS: N	I.Tech Data So	cience				
Son	nester		Hours / We		Total hrs	Credit	Maximum Marks			
		L	Т	Р		С	CA	ES		otal
	II	3	0	0	45	3	40	60	1(00
Evalua functio Learni	ative fee ons-optir ing autor	nt Learning edback-nona mality and a mata-explora levator dispa	ssociative approximati ation schem	on .Bandit I	vards and retu Problems: Exp	rns-Markov lore-exploit	Decision F dilemma-	Processes-Val Binary Bandi	·e_	[9]
TD pre Eligibil SARS	ediction, lity Tra A(lambo	aces :n-ste	f TD(0)- SA p TD pr		ning-R-learning- ambda)-forwarc g traces.			s. ews-Q(lambd	a)-	[9]
Value Policy	iteratio	gramming on,-policy ite ion-roll outs			DP-generalized			e-Carlometho	ls:	[9]
Case		lelicopter pilo		nd on policy i	earning-importa	ance sampli	ng –			[-]
Funct Value Iterativ gradie	study:H ion App predictive Methent metho	lelicopter pilo proximation ion-gradient nods .Policy	descent m Gradient	ethods- linea Methods:non- s-approximate	ar function app -associative lea	proximation- arning - RE	Control al	algorithm-exa		[9]
Funct Value Iterativ gradie Case Hierar MAXC Double	study:H ion App predictive Meth ent metho study:C rchical I Q framev e Deep-	lelicopter pilo proximation ion-gradient nods .Policy ods-estimatin computationa RI Anddeep work-Options -Q Networks	descent m Gradient ng gradients I Neuroscie Reinforce framework (DQN, DD0	ethods- linea Methods:non- s-approximate ence ment Learnin k-HAM frame	ar function app -associative lea e policy gradien ng ework-Option d DQN, Prioritize	proximation- arning - RE t algorithms iscovery alg	Control al EINFORCE -actorcritic r	algorithm-exa nethods ep Q-Networl	s-	
Funct Value Iterativ gradie Case Hierar MAXC Double	study:H ion App predictive Meth ent metho study:C rchical I Q framev e Deep-	lelicopter pilo proximation ion-gradient nods .Policy ods-estimatin computationa RI Anddeep work-Options -Q Networks	descent m Gradient ng gradients I Neuroscie Reinforce framework (DQN, DD0	ethods- linea Methods:non- s-approximate ence ment Learnin k-HAM frame QN, Dueling	ar function app -associative lea e policy gradien ng ework-Option d DQN, Prioritize	proximation- arning - RE t algorithms iscovery alg	Control al EINFORCE -actorcritic r	algorithm-exa nethods ep Q-Networl	ict is- on	[9]
Funct Value Iterativ gradie Case Hierar MAXC Double real we Text b 1.	study:H ion App predictive Meth study:C rchical I Q framev e Deep- orld prof Dook(s): Richard 2019. Russell,	Ielicopter pilo proximation ion-gradient nods .Policy ods-estimatin Computationa RI Anddeep work-Options -Q Networks blems in Dee	descent m Gradient ng gradients I Neuroscie Reinforce frameworl (DQN, DDC p Reinforce	ethods- linea Methods:non- s-approximate ence ment Learnin k-HAM frame QN, Dueling ement learning	ar function app -associative lea e policy gradien ng ework-Option d DQN, Prioritize	oroximation- arning - RE t algorithms iscovery alg edExperience earning: An	Control al EINFORCE -actorcritic r gorithms.De e Replay) Introductio	algorithm-exa nethods ep Q-Network Case study: Total Hou n', 2 nd Editior	rs , MIT	[9] [9] 45 Press
Funct Value Iterativ gradie Case Hierar MAXC Double real we Text b 1. 2. Refere	study:H ion App predictive Meth ent methe study:C rchical I Q framev e Deep- orld prob orld prob Dook(s): Richard 2019. Russell, 2016. ence(s):	Ielicopter pilo proximation ion-gradient nods .Policy ods-estimatin computationa RI Anddeep work-Options -Q Networks blems in Dee S. Sutton a , Stuart J., a	descent m Gradient Ing gradients I Neuroscie Reinforce framework (DQN, DDC p Reinforce ind Andrew	ethods- linea Methods:non- s-approximate nce ment Learnin k-HAM frame QN, Dueling ement learning G. Barto, 'F prvig. 'Artificia	ar function app -associative lea e policy gradien mg ework-Option d DQN, Prioritize g Reinforcement I al intelligence: a	proximation- arning - RE t algorithms iscovery alg edExperience earning: An a modern ap	Control al EINFORCE -actorcritic r gorithms.De e Replay) Introductio	algorithm-exa nethods ep Q-Network Case study : Total Hou n', 2 nd Edition earson Educat	rs , MIT	[9] [9] 45 Press
Funct Value Iterativ gradie Case Hierar MAXC Double real we Text b 1. 2. Reference 1. 2.	study:H ion App predictive Meth ent methor study:C rchical I Q framev e Deep- orld prob Dook(s): Richard 2019. Russell, 2016. ence(s): Ian Goo Keng, V	lelicopter pilo proximation ion-gradient nods .Policy ods-estimatin computationa RI Anddeep work-Options -Q Networks blems in Dee 	descent m Gradient og gradients I Neuroscie Reinforce framework (DQN, DDC p Reinforce nd Andrew nd Peter No huaBengio, iraesser, La	ethods- linea Methods:non- s-approximate ence ment Learnin k-HAM frame QN, Dueling ement learning or G. Barto, 'F prvig. 'Artificia and Aaron C aura, 'Founda	ar function app -associative lea e policy gradien ng ework-Option d DQN, Prioritize g Reinforcement I al intelligence: a courville. 'Deep ations of Deep	earning: An a modern ap learning'. M	Control al EINFORCE -actorcritic r gorithms.De e Replay) Introductio oproach', Pe	algorithm-exa nethods ep Q-Network Case study: Total Hou n', 2 nd Edition earson Educat	s- on , MIT i ion Lim	[9] [9] 45 Press
Funct Value Iterativ gradie Case Hierar MAXC Double real we Text b 1. 2. Reference 1. 2.	study:H ion App predictive Meth ent methor study:C rchical I Q framev e Deep- orld prob Dook(s): Richard 2019. Russell, 2016. ence(s): Ian Goo Keng, V Python',	Ielicopter pilo proximation ion-gradient nods .Policy ods-estimatin computationa RI Anddeep work-Options -Q Networks blems in Dee 	descent m Gradient og gradients I Neuroscie Reinforce frameworl (DQN, DDC p Reinforce nd Andrew nd Peter No huaBengio, iraesser, La esley Data &	ethods- linea Methods:non- s-approximate ence ment Learnin k-HAM frame QN, Dueling ement learning orvig. 'Artificia and Aaron C aura, 'Founda & Analytics Se	ar function app -associative lea e policy gradien ng ework-Option d DQN, Prioritize g Reinforcement I al intelligence: a courville. 'Deep ations of Deep	earning: An a modern ap learning'. M Reinforcem	Control al EINFORCE -actorcritic r gorithms.De e Replay) Introductio pproach', Pe IT press, 20 ent Learning	algorithm-exa nethods ep Q-Network Case study: Total Hou n', 2 nd Edition earson Educat	s- on , MIT i ion Lim	[9] [9] 45 Press

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	Reinforcement Learning Problem	1
1.1	Evaluative Feedback, Non-Associative Learning	1
1.2	Rewards and Returns	1
1.3	Markov Decision Processes	1
1.4	Value Functions	1
1.5	Optimality and Approximation	1
1.6	Bandit Problems: Explore- Exploit Dilemma	1
1.7	Binary Bandits	1
1.8	Learning Automata	1
1.9	Exploration Schemes	1
2	Temporal Difference Learning	
2.1	TD Prediction	1
2.2	Optimality Of TD (0)- SARSA	1
2.3	Q-Learning,R-Learning	1
2.4	Games and After States	1
2.5	Eligibility Traces: N-Step TD Prediction	1
2.6	TD (Lambda)	1
2.7	Forward And Backward Views	1
2.8	Q(Lambda),SARSA (Lambda)	1
2.9	Replacing Traces And Accumulating Traces.	1
3	Dynamic Programming	
3.1	Value Iteration	1
3.2	Policy Iteration	1
3.3	Asynchronous DP	1
3.4	Generalized Policy Iteration	1
3.5	Monte-Carlo Methods	1
3.6	Policy Evaluation	1
3.7	Roll Outs	1
3.8	On Policy and Off Policy Learning	1
3.9	Importance Sampling	1
4	Function Approximation	
4.1	Value Prediction	1
4.2	Gradient Descent Methods	1
4.3	Linear Function Approximation	1
4.4	Control Algorithms	1
4.5	Fitted Iterative Methods	1

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2 %

4.6	Policy Gradient Methods: Non-Associative Learning	1
4.7	REINFORCE Algorithm	1
4.8	Exact Gradient Methods, Estimating Gradients	1
4.9	Approximate Policy Gradient Algorithms-Actor Critic Methods	1
5	Hierarchical RI and Deep Reinforcement Learning	
5.1	MAXQ framework	1
5.2	Options framework	1
5.3	HAM framework	1
5.4	Option discovery algorithms	1
5.5	Deep Q-Networks	1
5.6	Double Deep	2
5.7	Q Networks (DQN, DDQN, Dueling DQN, Prioritized Experience Replay)	2
	Total	45

Course Designers

S.Raja(rajas@ksrct.ac.in)

60 PDS E32	Pasammandar Systems	Category	L	Т	Ρ	Credit
	Recommender Systems	PE	3	0	0	3
Objective						

- Understand the basic concepts of recommender systems.
- To learn techniques for including non-personalized, content-based, and collaborative filtering
- To automate a variety of choice-making strategies with the goal of providing affordable, personal and high quality recommendations.
- To learn performance evaluation of recommender systems based on various metrics.
- Implement machine-learning and data-mining algorithm in recommender systems data sets.

Prerequisite

Basic knowledge of Higher Secondary Mathematics, Binary Operations & Mathematical Logic.

Course Outcomes

O	On the successful completion of the course, students will beable to					
C01	Classify the filtering techniques and issues in the recommender system	Understand				
CO2	Cite the content –based filtering and collaborative filtering	Understand				
CO3	Define recommendation system for a particular application domain.	Remember				
CO4	Evaluate recommender systems on the basis of metrics such as accuracy, rank accuracy, diversity, product coverage, and serendipity	Apply				
CO5	Demonstrate Applications of recommendation systems	Apply				

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	3	2	2	2				
CO2	3	2	3	3	3	3				
CO3	3	3	3	2	2	2				
CO4	3	3	3	3	3	3				
CO5	3	3	3	3	3	3				
3-Strong; 2-Me	-Strong; 2-Medium; 1-Some									

Assessment Pattern

Plaam'a Catagany	Continuous Asse	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember(Re)	30	10	30	
Understand (Un)	30	20	30	
Apply (Ap)	-	30	40	
Analyse (An)	-	-	-	
Evaluate(Ev)	-	-	-	
Create (Cr)	-	-	-	

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2%5

	K	.S.Rangasa	my College	of Technology	v – Autono	omous R202	2	
			60 PDS E32	- Recommend	er System			
	1			I.Tech Data So				
Semester		Hours / Wee		Total hrs	Credit		/laximum Marks ES	
Cernester	L	<u> </u>	P		C	CA	Total	
	3	0	0	45	3	40	60	100
Feedback, Us	ser Profiles,	Recommer	nder system		atrix opera	tions, covari	les: Relevance ance matrices, er system.	[9]
Item profiles,	hitecture of o	features of	documents,	Advantages and pre-processing es, Similarity ba	and featur	re extraction,	based filtering, Obtaining item tion algorithms.	[9]
factorization, A	recommenda Attacks on co			ommendation, r systems.	Model b	ased appro	oaches, Matrix	[9]
augmentation,	for hybrid Parallelized	d hybridizati	on design:		tching, Mix		ation, Feature d hybridization	[9]
recommender	ent media, systems. S d differences	Social reco	mmendation	s. Recommend	ding friend	ls: link pred	atasets. Group diction models. etwork diffusion	[9]
							Total Hours	45
Text book(s):								
	n D., Zanker 011)', 1 st Edi		IFering A., '	Recommender	Systems:	An Introducti	ion, Cambridge	University
	elis N., Drac		erbert K., Du	val E., 'Recomr	mender Sy	stems For Le	earning, Springer	⁻ (2013),'
Reference(s)	:							
1. J. Lesko	ovec, A. Raja						Cambridge, 201	2.
				: The Textbook,				
3. Ricci F		., Shapir <mark>a I</mark>	D., Kantor E	B.P., 'Recomme	ender Syst	tems Handbo	ook,' Springer(2	011), 1 st
4. Hill, Wil 4. System	l, Larry Stead	nity of Use. I CHI '95.	n Proceedin	gs of the SIGC	HI Confere	ence on Hum	and Evaluating an Factors in Co Wesley Publish	omputing

CHAIRMAN BOARD OF STUD Department of Information K.S.Rangasamy College of Tiruchengode 637

	ontents and Lecture Schedule	
S.No.	Торіс	No.of Hours
1	Introduction	
1.1	Overview of Information Retrieval,	1
1.2	Retrieval Models, Search and Filtering Techniques	1
1.3	Relevance Feedback, User Profiles,	1
1.4	Recommender system functions	1
1.5	Matrix operations, covariance matrices	1
1.6	Understanding ratings	1
1.7	Applications of recommendation systems	2
1.8	Issues with recommender system.	1
2	Content-Based Filtering	
2.1	High level architecture of content-based systems,	1
2.2	Advantages and drawbacks of content based filtering, Item profiles	1
2.3	Discovering features of documents	1
2.4	pre-processing and feature extraction	1
2.5	Obtaining item features from tags,	1
2.6	Methods for learning user profiles	1
2.7	Similarity based retrieval	1
2.8	Classification algorithms.	2
3	Collaborative Filtering	
3.1	User-based recommendation	1
3.2	Item-based recommendation	2
3.3	Model based approaches	2
3.4	Matrix factorization	2
3.5	Attacks on collaborative recommender systems	2
4	Hybrid Approaches	
4.1	Opportunities for hybridization	1
4.2	Monolithic hybridization design	1
4.3	Feature combination	1
4.4	Feature augmentation	1
4.5	Parallelized hybridization design: Weighted	1
4.6	Switching, Mixed, Pipelined hybridization design	1
4.7	Cascade Meta-level	2
4.8	Limitations of hybridization strategies	1
5	Applications of RSs	
5.1	RSs for content media, social media	1
5.2	Communities Music and video RSs	2
5.3	Datasets. Group recommender systems	1
5.4	Social recommendations	1
5.5	Recommending friends: link prediction models	1
5.6	Similarities and differences of RSs with task assignment in mobile crowd sensing	1
5.7	social network diffusion awareness in RSs.	2
	Тс	otal 45

Course Designers

Mr.SenthilKumar K - senthilkumark@ksrct.ac.in

60 PDS E33	Big Data Security	Category	L	Т	Ρ	Credit
00 FD3 E33	Big Data Security	PE	3	0	0	3

R.P ~

CHAIRMAN BOARD OF STUD Department of Information K.S.Rangasamy College of Tiruchengoda

- To understand the mathematical foundations of security principles
- To appreciate the different aspects of encryption techniques
- To understand the role played by authentication in security
- To learn the various techniques in security analytics
- To understand the security concerns of big-data.

Prerequisite

Basic knowledge of Cryptography and Network security, Big data & Mathematical Logic.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Design algorithms in a secure manner for Big data applications	Understand
CO2	Analyse the knowledge about the confidentiality factors and encryption techniques.	Analyse
CO3	Know the authentication and confidentiality hash function and to expel the third party penetration in a mail transfer between two parties.	Apply
CO4	Use available security practices in big-data Security analytics	Apply
CO5	Recognize the Security Analysis with Text Mining	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	2
CO2	3	3	2	3	3	3
CO3	3	3	2	2	2	2
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3
B-Strong; 2-Med	dium; 1-Some	•	1		4	•

Plaam'a Catagany	Continuous Asse	essment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember (Re)	20	20	20
Understand (Un)	10	10	40
Apply (Ap)	20	30	30
Analyse (An)	10	-	10
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

	ł	(.S.Rangasa	my College	of Technolog	y – Autono	mous R2022	2	
			60 PDS E	33 - Big Data	Security			
			PDS: N	I.Tech Data So	cience			
Semester		Hours / Wee		Total hrs	Credit		laximum Marks	
Gemester	L	Т	Р		С	CA	ES	Total
	3	0	0	45	3	40	60	100
Symmetric To	-			. Is Cara				101
•		•	-			•	ution Ciphers –	[9]
		assical Cipn	ers – DES –	AES – Confide	ntiality woo	les of Operat	ion	
Asymmetric	•		Disersta la	a a sitte sa sa sa la la s			9. om mton obvoio	[0]
	•	• •		•			& cryptanalysis	[9]
Authenticatio			e architectur	e and cryptogra	phy - Dala	integrity tech	niques.	
		to Authort	iontion functi		outhoption	tion onder	Hash functions	[0]
	•			sage Digest alg				[9]
Security Ana		s and MACE		sage Digest al	jonunin – 3	ecure nash a	igonunn.	
•	•	abutice Te	chniques in	Applytice Ar	alveie in o	vorvdav lifo	- Challenges in	[9]
	•	•	•	og file – Simulat	•		•	[9]
Security Ana							5.	
•	•	v Analysis w	ith Text Mini	ng – Security Ir	telligence -	– Security Bre	eaches	[9]
7100000 7 analys		y / analytic w			lionigorioo		Total Hours	45
Text book(s):							Total Hours	40
William		ryptography	And Network	Security – Print	nciples and	Practices', 8	th Edition, Prent	ice Hall of
1. India, 2	-	,, , ,		,		,		
Behrou	z A. Forouz	en, Dabdeer	Mukhopad	hya, 'Cryptogra	aphy and I	Network Secu	urity', Tata McG	aw-Hill,
2. 2012.		,	·	, , , , , , , , , , , , , , , , , , ,				
Reference(s)								
1. Douglas	R. Stinson,	'Cryptograp	hy Theory ar	nd Practice ', Cł	napman & I	Hall/CRC, Thi	rd Edition, 2006	
Mark T	alabis, Robe	rt McPherso	on, I Miyamo	oto and Jason	Martin, 'In	formation Se	curity Analytics:	Finding
2. Security	/ Insights, Pa	tterns, and A	Anomalies in	Big Data',Syng	ress Media	a, U.S., 2014		
3. Padmar	nabhan T R,	Shyamala C	and Harini N	N, 'Cryptograph	y and Secu	rity', Wiley Ρι	ublications 2011.	
4. Josef P	ieprzyk, Tho	mas Hardjon	o and Jenife	r Seberry, 'Fun	damentals	of Computer	Security', Spring	er 2010.
		,-		, , , , , , , , , , , , , , , , , , ,		•	, , , U	

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2%5

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	Symmetric Techniques	
1.1	Probability and Information Theory	1
1.2	Algebraic foundations	1
1.3	Number theory	1
1.4	Substitution Ciphers	1
1.5	Transposition Ciphers	1
1.6	Classical Ciphers	1
1.7	DES	1
1.8	AES	1
1.9	Confidentiality Modes of Operation	1
2	Asymmetric Techniques	
2.1	Diffie-Hellman Key Exchange protocol	2
2.2	Discrete logarithm problem	1
2.3	RSA cryptosystems & cryptanalysis	2
2.4	ElGamal cryptosystem	1
2.5	Elliptic curve architecture and cryptography	2
2.6	Data Integrity techniques.	1
3	Authentication	
3.1	Authentication requirements	1
3.2	Authentication functions	1
3.3	Message authentication codes	2
3.4	Hash functions	1
3.5	Security of hash functions and MACS	2
3.6	MD5 Message Digest algorithm	1
3.7	Secure hash algorithm.	1
4	Security Analytics I	
4.1	Introduction to Security Analytics	1
4.2	Techniques in Analytics	2
4.3	Analysis in everyday life	2
4.4	Challenges in Intrusion and Incident Identification	2
4.5	Analysis of Log file	1
4.6	Simulation and Security Process	1
5	Security Analytics II	
5.1	Access Analytics	2
5.2	Security Analysis with Text Mining	3
5.3	Security Intelligence	2
5.4	Security Breaches	2
	Total	45

Course Contents and Lecture Schedule Dr.C.Rajan- rajan@ksrct.ac.in

CHAIRWAY BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

60 PDS E34	Blockchain in Al and IoT	Category	L	Т	Ρ	Credit
00 PD3 E34	BIOCKCHAIN IN AF AND IOT	PE	3	0	0	3

- To understand the working of IoT and Blockchain
- To identify consensus mechanism and apply Blockchain for IoT sector.
- To use Hyper ledger Fabric and Ethereum platform to implement Blockchain applications.
- To understand the machine learning techniques, the function of Blockchain and Al
- To develop the future of AI with Blockchain

Prerequisite

Basic knowledge of Internet of things and Artificial Intelligence.

Course Outcomes

On the successful completion of the course, students will be able to

Apply Hyperledger Fabric and Ethereum platform to implement the Block Chain	Apply
Application	
Demonstrate the working of IoT and Blockchain	Create
Identify Consensus mechanism for Blockchain Application	Evaluate
Provide conceptual understanding of the function of Blockchain & AI as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.	Create
Develop techniques in information science applications by applying Computational intelligence and appropriate machine learning techniques in Blockchain	Apply
-	Application Demonstrate the working of IoT and Blockchain Identify Consensus mechanism for Blockchain Application Provide conceptual understanding of the function of Blockchain & AI as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable. Develop techniques in information science applications by applying Computational

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	3	2
CO2	3	2	3	3	3	2
CO3	3	3	3	3	3	3
CO4	3	2	3	3	2	2
CO5	3	2	3	3	2	3

3-Strong; 2-Medium; 1-Some

Assessment Pattern

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	20	10	30
Understand(Un)	10	00	10
Apply (Ap)	10	20	40
Analyse (An)	10	20	20
Evaluate(Ev)	10	00	00
Create(Cr)	00	10	00

K.S.Rangasamy College of Technology – Autonomous R2022

of Bitcoin, Ethereum: A brief overview of Ethereum, Introduction to Hyperledger - Overview of the project - Hyperledger Fabric - Hyperledger Saw tooth - Other Hyperledger frameworks and tools. Introduction to IoT & Blockchain Introduction to IoT & Blockchain Introduction to Internet of Things (IoT)- Concepts and definitions of IoT-History of IoT –IoT vs Conventional Network-IoT Architecture- Introduction to Blockchain-Generations of Blockchain Structure of Blockchain- Opportunities and challenges in IoT and Blockchain. Blockchain Usecases in IoT sector Autonomous Decentralized peer to peer telemetry-Blockchain Enabled Security for Smart cities Blockchain Enabled Smart Home Architecture-Blockchain based self-managed VANETs-Security and privacy of data Blockchain and Artificial Intelligence Domain Specific Applications - Applying AI & Blockchain: Healthcare, Supply chain, Financial Services, Information Security, Document management, AI & Blockchain Driven Databases - Centralized versus distributed data, Big data for AI analysis, Data Management in a DAO, Emerging patterns for Database Solutions Developing and Future of AI with Blockchains: Applying SDLC practices in Blockchain: Introduction to DIApp - Architecture of a DIApp - Developing a DIApp - Testing a DIApp - Deploying DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of				60 PC	OS E34 - Bloc	kchain in Al a	nd IoT	0 0		
Serifiester L T P Total ins C CA ES Total II 3 0 0 45 3 40 60 100 Overview of Blockchain Blockchain Blockchain Blockchain 60 100 Overview of Blockchain Comparing the technologies with examples - Public versus private versus distributed databases - A brief overview of the project - Hyperledger Fabric - Hyperledger Saw tooth - Other Hyperledger frameworks and tools. [5] Introduction to IoT & Blockchain Introduction to IoT - Abrief overview of the project - Architecture- Introduction to Blockchain-Generations of Blockchain Structure of Blockchain [5] Network-IoT Architecture- Introduction to Blockchain-Generations of Blockchain Structure of Blockchain [6] Opportunities and challenges in IoT and Blockchain. [6] Blockchain Usecases in IoT sector Autonomous Decentralized peer to peer telemetry-Blockchain Enabled Security for Smart cities Blockchain Autonomous Decentralized peer to peer telemetry-Blockchain Driven Databases - Centralized versus distributed data, Big data for Al analysis, Data Management in a DAO, Emerging patterns for Database [6] Bockchain and Artificial Intelligence [6] [6] [6] Domain Specific Applications - Applying DIA & Blockchain in a DAO, Emerging patterns fo					PDS: M.Tech	Data Science	9			
L I P 45 C CA ES 10dal II 3 0 0 45 3 40 60 100 Overview of Blockchain Blockchain Blockchain Features 40 60 100 Overview of Blockchain Blockchain Comparing usage scenarios - Privacy in Blockchain - Understanding Bitcoin - A brief overview of Blockchain 50 61 50	Somostor		Hours / We	eek	Total bra	Credit		Maximum Ma	arks	
Overview of Blockchain Getting Started with Blockchain: Blockchain versus distributed ledger technology versus distributed databases - Comparing usage scenarios - Privacy in Blockchain - Understanding Bitcoin - A brief overview of Blockchain - Comparing usage scenarios - Privacy in Blockchain - Understanding Bitcoin - A brief overview of Bitcoin, Ethereum: A brief overview of Ethereum, Introduction to Hyperledger - Overview of the project - Hyperledger Fabric - Hyperledger Saw tooth - Other Hyperledger frameworks and tools. Introduction to IoT & Blockchain Introduction to IoT A Blockchain Introduction to IoT A Blockchain Finander Architecture - Introduction to Blockchain-Generations of Blockchain Structure of Blockchain Opportunities and challenges in IoT and Blockchain. Blockchain Structure of Blockchain Blockchain and Artificial Intelligence Domain Specific Applications - Applying AI & Blockchain: Driven Databases - Centralized versus Glutions - Applying AI & Blockchain Driven Databases - Centralized versus Glutions Dipop - Developing and Future of Al with Blockchains: Introduction to DIApp - Architecture of a DIApp - Developing a DIApp - Monitoring a DIApp. Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain: Introduction to DIApp - Architecture of 2020. Text book(s): 1 1 Broic Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain': Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)	Semester	L	Т	Р	Total his		CA	ES	То	tal
Getting Started with Blockchain: Blockchain versus distributed ledger technology versus distributed databases - Comparing ute technologies with examples - Public versus private versus permissioned Blockchain - Comparing usage scenarios - Privacy in Blockchain - Understanding Bitcoin - A brief overview of Ethereum, Introduction to Hyperledger - Overview of the project - Hyperledger Fabric - Hyperledger Saw tooth - Other Hyperledger frameworks and tools. Introduction to IoT & Blockchain Introduction to Internet of Things (IoT) - Concepts and definitions of IoT-History of IoT -IoT vs Conventional Network-IoT Architecture - Introduction to Blockchain. [5] Blockchain Usecases in IoT sector Autonomous Decentralized peer to peer telemetry-Blockchain Enabled Security for Smart cities Blockchain Enabled Smart Home Architecture-Blockchain based self-managed VANETs-Security and privacy of data [5] Blockchain and Artificial Intelligence Doment Al Blockchains Blockchain Given Databases - Centralized versus distributed data, Big data for AI analysis, Data Management in a DAO, Emerging patterns for Databases Solutions [6] Developing and Future of AI with Blockchains Monitoring a DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain: Networks, solution, and Recent Advancements (Internet of Everything (IoE))', CRC Press; 1 st Edition, November 2020. [5] Text book(s): 1. Jorio Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain', 1 st Edition, Packt Publishin	••	-	-	0	45	3	40	60	10	00
Introduction to Internet of Things (IoT)- Concepts and definitions of IoT-History of IoT -IoT vs Conventional Network-IoT Architecture- Introduction to Blockchain-Generations of Blockchain Structure of Blockchain-Gportunities and challenges in IoT and Blockchain. [5] Blockchain Usecases in IoT sector [5] Autonomous Decentralized peer to peer telemetry-Blockchain Enabled Security for Smart cities Blockchain Enabled Smart Home Architecture-Blockchain based self-managed VANETs-Security and privacy of data [6] Blockchain and Artificial Intelligence Domain Specific Applications - Applying AI & Blockchain: Healthcare, Supply chain, Financial Services, Information Security, Document management, AI & Blockchain na DAO, Emerging patterns for Database Solutions [6] Developing and Future of AI with Blockchains Applying SDLC practices in Blockchain: Introduction to DIApp - Architecture of a DIApp - Developing a DIApp - Developing DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain: in enterprises & Government. [6] Text book(s): 1. Total Hours [4] 1. Brojo Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain', 1st Edition, Newenber 2020. [5] 2. Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1st Edition, Packt Publishing Lts, July 2020. [6] 3. John Soldatos, 'Building Bl	Getting Sta databases Blockchain of Bitcoin, E	arted with - Compa - Compar Ethereum:	n Blockcha tring the te ring usage s A brief over	echnologies scenarios - erview of Et	with exampl Privacy in Blo hereum, Intro	es - Public ve ckchain - Unde duction to Hyp	ersus private erstanding Bit erledger - Ov	versus perm coin - A brief overview of the	issioned overview	[9]
Autonomous Decentralized peer to peer telemetry-Blockchain Enabled Security for Smart cities Blockchain Enabled Smart Home Architecture-Blockchain based self-managed VANETs-Security and privacy of data Blockchain and Artificial Intelligence Domain Specific Applications - Applying AI & Blockchain: Healthcare, Supply chain, Financial Services, Information Security, Document management, AI & Blockchain Driven Databases - Centralized versus distributed data, Big data for AI analysis, Data Management in a DAO, Emerging patterns for Database Solutions Developing and Future of AI with Blockchains Applying SDLC practices in Blockchain: Introduction to DIApp - Architecture of a DIApp - Developing a DIApp - Testing a DIApp - Deploying DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain in enterprises & Government. Total Hours 1 Brojo Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain: Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)) ', CRC Press; 1st Edition , November 2020. 2 Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1st Edition, Packt Publishing Lts, July 2020. Reference(s): 1 John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 2 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 3 <u>https://www.velmie.com/practical-blockchain-study</u> 4 <u>https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions</u> nd_Recent_Advancements	Introduction Network-Io	to Intern Archited	et of Things cture- Intro	s (IoT)- Cor duction to E	Blockchain-Ge					[9]
Domain Specific Applications - Åpplying AI & Blockchain: Healthcare, Supply chain, Financial Services, Information Security, Document management, AI & Blockchain Driven Databases - Centralized versus distributed data, Big data for AI analysis, Data Management in a DAO, Emerging patterns for Databases Solutions [9] Developing and Future of AI with Blockchains Amagement in a DAO, Emerging patterns for Database and Database of	Autonomou Enabled Sn	s Decentr nart Home	ralized peer e Architectu	r to peer tel ire-Blockcha						[9]
Applying SDLC practices in Blockchain: Introduction to DIApp - Architecture of a DIApp - Developing a DIApp - Testing a DIApp - Deploying DIApp - Monitoring a DIApp, Implementing DIApp - Evolution of decentralized applications, building a sample DIApp, Developing Smart Contracts, Solution approach with AI, Developing: Client code, Backend, Frontend, Future of converging AI & Blockchain in enterprises & Government. Total Hours Text book(s): 1. Brojo Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain: Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)) ', CRC Press; 1 st Edition , November 2020. 2. Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1 st Edition, Packt Publishing Lts, July 2020. Reference(s): 1. John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 3. https://www.velmie.com/practical-blockchain-study 4. https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions nd_Recent_Advancements	Domain Sp Information distributed	ecific App Security,	olications - , Documen	Applying A t managem	ient, Al & Blo	ockchain Drive	n Databases	- Centralized	versus	[9]
1 Brojo Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain: Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)) ', CRC Press; 1 st Edition, November 2020. 2. Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1 st Edition, Packt Publishing Lts, July 2020. Reference(s): 1. 1. John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, 'Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 3. https://www.velmie.com/practical-blockchain-study 4. https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions' nd_Recent_Advancements	Applying S DIApp - Te decentralize Al, Develop	DLC pracesting a D DLC pracesting a D Ded application Ding: Clier	tices in Blo DIApp - De ations, build	ockchain: In ploying DIA ling a samp	troduction to App - Monitor Me DIApp, De	ing a DIApp, l veloping Smar	Implementing t Contracts, S	DIApp - Evo Solution approa	lution of ach with	[9]
Text book(s): 1. Brojo Kishore Mishra, Sanjay Kumar Kuanar 'Handbook of IoT and Blockchain: Methods, Solutions, and Recent Advancements (Internet of Everything (IoE)) ', CRC Press; 1 st Edition , November 2020. 2. Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1 st Edition, Packt Publishing Lts, July 2020. Reference(s): 1. 1. John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, 'Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 3. https://www.velmie.com/practical-blockchain-study 4. https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions' nd_Recent_Advancements								Tota	al Hours	45
 Recent Advancements (Internet of Everything (IoE)) ', CRC Press; 1st Edition , November 2020. 2. Ganesh Prasad Kumble, 'Practical Aritifical Intelligence and Blockchain', 1st Edition, Packt Publishing Lts, July 2020. Reference(s): John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, 'Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 <u>https://www.velmie.com/practical-blockchain-study</u> https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions nd_Recent_Advancements 										
 John Soldatos, 'Building Blocks for IoT Analytics', River Publishers,2016 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, 'Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 <u>https://www.velmie.com/practical-blockchain-study</u> https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions nd_Recent_Advancements 	 Brojo K Recent Ganest July 20 	ishore Mi Advance Prasad I 20.	ments (Inte	rnet of Ever	ything (IoE)) '	, CRC Press; 1	st Edition, No	vember 2020.		,
 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, 'Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction', Princeton University Press,2016 <u>https://www.velmie.com/practical-blockchain-study</u> https://www.researchgate.net/publication/337649428_Handbook_of_IoT_and_Blockchain_Methods_Solutions nd_Recent_Advancements 			Ruilding Blo	cks for InT	Analytics' Riv	er Publishere ?	2016			
 4. https://www.researchgate.net/publication/337649428_Handbook_of_loT_and_Blockchain_Methods_Solutions nd_Recent_Advancements 	2. Arvind 'Bitcoin	Narayana and Cryp	n, Joseph E tocurrency	Bonneau, Eo Technologi	dward Felten, es: A Compre	Andrew Miller	and Steven G		Press,20	16
nd_Recent_Advancements										
Contents and Lecture Schedule				et/publicatio	n/337649428_	_Handbook_of	_loT_and_Blo	ockchain_Meth	ods_Solu	tions_
	Contents a	nd Lectu	re Schedu	le						

S.No.	Торіс	No.of Hours
1	Overview of Blockchain	
1.1	Getting Started with Blockchain: Blockchain versus distributed ledger technology versus distributed databases	1
1.2	Comparing the technologies with examples	1
1.3	Public versus private versus permissioned Blockchain	1
1.4	Comparing usage scenarios	1
1.5	Privacy in Blockchain - Understanding Bitcoin	1
1.6	A brief overview of Bitcoin, Ethereum: A brief overview of Ethereum, Introduction to	1

R.P-M

	Hyperledger	
1.7	Overview of the project - Hyperledger Fabric	1
1.8	Hyperledger Saw tooth	1
1.9	Other Hyperledger frameworks and tools	1
2	Introduction to IoT & Blockchain	•
2.1	Introduction to Internet of Things (IoT)	1
2.2	Concepts and definitions of IoT	1
2.3	History of IoT –IoT vs Conventional Network	1
2.4	IoT Architecture-	1
2.5	Introduction to Blockchain	1
2.6	Generations of BlockchainStructure of Blockchain	2
2.7	Opportunities and challenges in IoT and Blockchain	2
3	Blockchain Usecases in IoT Sector	
3.1	Autonomous Decentralized peer to peer telemetry	1
3.2	Blockchain Enabled Security for Smart cities Blockchain Enabled	2
3.3	Smart Home Architecture	2
3.4	Blockchain based self	1
3.5	managed VANETs	1
3.6	Security and privacy of data	2
4	Blockchain and Artificial Intelligence	
4.1	Domain Specific Applications	1
4.2	Applying AI & Blockchain Healthcare, Supply chain, Financial Services, Information Security	2
4.3	Document management	1
4.4	AI & Blockchain Driven Databases	1
4.5	Centralized versus distributed data	1
4.6	Big data for AI analysis	1
4.7	Data Management in a DAO	1
4.8	Emerging patterns for Database Solutions	1
5	Developing and Future of AI with Blockchains	
5.1	Applying SDLC practices in Blockchain: : Introduction to DIApp	1
5.2	Architecture of a DIApp	1
5.3	Developing a DIApp	1
5.4	Testing a DIApp- Deploying DIApp	1
5.5	Monitoring a DIApp, Implementing DIApp	1
5.6	Evolution of decentralized applications, building a sample DIApp	1
5.7	Developing Smart Contracts, Solution approach with Al	1
5.8	Developing: Client code, Backend, Frontend	1
5.9	Future of converging AI & Blockchain in enterprises & Government	1
	Total	45

Ms.B.Manimegalai (manimegalai@ksrct.ac.in)

PE 3 0 0 3	60 PDS E35	Cognitive Science and Analytics	Category	L	Τ	Ρ	Credit
	60 PD5 E35		PE	3	0	0	3

Objective(s)

- To study the basic concepts and approaches in the field of cognitive science
- To apply the concepts of planning, reasoning and learning models in cognitive applications
- To analyze language and semantic models of cognitive process
- To Understand the concepts of cognitive development
- To acquire knowledge in language processing & semantics

Prerequisite

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

Basic knowledge of Artificial Intelligence

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the basic concept of cognitive science	Apply
CO2	Analyse the learning model and apply the same to appropriate real world applications	Analyse
CO3	Apply reasoning methodology to real world applications	Apply
CO4	Create the new concepts of cognitive development & learning	Create
CO5	Analyse the knowledge in language processing and understanding	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	2	3	3	2
CO3	3	3	2	3	3	3
CO4	3	3	2	3	2	2
CO5	3	3	2	2	2	3
-Strong; 2-Mee	dium; 1-Some	l			L	1

Assessment Pattern

Plaam'a Catagany	Continuous Asse	nuous Assessment Tests (Marks) End Sem Ex		
Bloom's Category	1	2	(Marks)	
Remember(Re)	00	00	00	
Understand (Un)	40	00	20	
Apply (Ap)	20	30	30	
Analyze (An)	00	20	30	
Evaluate(Ev)	00	00	00	
Create (Cr)	00	10	20	

K.S.Rangasamy College of Technology – Autonomous R2022									
60 PDS E35 - Cognitive Science and Analytics									
	PDS: M.Tech Data Science								
Serr	nester		Hours / Wee		Total hrs	Credit		Maximum Marks	
0011		L	Ť	P		C	CA	ES	Total
Introdu	ll uction to	3 Cognitivo	0 Seienee	0	45	3	40	60	100
Introduction to Cognitive Science Fundamental Concepts of cognitive science – Computers in Cognitive Science – Applied Cognitive Science – The Interdisciplinary Nature of Cognitive Science – Artificial Intelligence: Knowledge representation, semantic networks, frames, conceptual dependency, scripts, Ontology Understanding, Common Sense Reasoning.								i, [9]	
Planni Increm	ng – Si nental C	oncept Lea	ic- Learning rning – Indu	ctive Learni		ion Techni	ques – Stat	ng by Examples istical Reasoning nination Trees.	
Reasoning methods & Cognitive Modeling Reasoning by analogy – Explanation based reasoning – Case based reasoning- Constraint Satisfaction- Constraint Propagation- Temporal reasoning – Temporal Constraint Networks Spatial reasoning- Visual Spatial reasoning- Meta reasoning – Learning by correcting mistakes AI ethics, Declarative/ logic-based computational cognitive modelling - connectionist models of cognition - Bayesian models of cognition - Cognitive Models of Memory and Language - Computational models of episodic and semantic memory - modelling psycholinguistics (with emphasis on lexical semantics) - towards deep understanding - modelling the interaction of language, memory and learning.							al d - [9] -		
Cognitive Development Child concept acquisition - Child language learning - Acquisition of arithmetic skills – Distributed Cognition and Learning- Simple and Complex Decision Making – Reasoning Under Uncertainty – Natural Language Understanding – Natural Language Processing – Automated Natural Language Generation.									
Language and Semantic Processing Knowledge Acquisition – Semantics in Cognitive Science – Meaning and Entailment – Cognitive and Computational Models of Semantic Processing – Information Processing Models of the Mind Physical symbol systems and language of thought- Applying the Symbolic Paradigm- Neural networks and distributed information processing- Neural network models of Cognitive Processes Dynamical systems and						al d [9]			
Situate	d cognit							Total Hour	s 45
Text be	. /								
١.	Press, N	lew York, 20	014.					lind", Cambridge	
		Pradeep Ku Publishers, 2		Samarjeet,"	Emerging Tren	ds and App	olications in	Cognitive Compu	ting", IGI
	ence(s):								
1.	Publishe	ers, 2015.						, Third Edition,	Pearson
2.	Paul Mil	ler, "An Intro	oductory Cou	rse in Comp	utational Neuro	science", N	/IT Press, 20	018.	
								The Oxford Han	book of
 Computational and Mathematical Psychology", Oxford University Press (2015). Neil Stillings, Steven E. Weisler, Christopher H. Chase and Mark H. Feinstein, "Cognitive Sciences" 									

Course Contents and Lecture Schedule						
S.No.	Торіс	No.of Hours				
	v.e.f. 22.07.2024 Approved Passed in BoS Id on 24/05/2024in Academic Council Meeting	p.p-				
held on 25/	05/2024					

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

1	Introduction to Cognitive Science	
1.1	Fundamental Concepts of cognitive science	1
1.2	Computers in Cognitive Science	1
1.3	Applied Cognitive Science	1
1.4	The Interdisciplinary Nature of Cognitive Science	1
1.5	Artificial Intelligence: Knowledge representation	1
1.6	semantic networks, frames	1
1.7	conceptual dependency, scripts	1
1.8	Ontology Understanding	1
1.9	Common Sense Reasoning.	1
2	Planning and Learning Methods	
2.1	Planning – Situation Logic	1
2.2	Learning in Cognitive Systems	1
2.3	Rote Learning – Learning by Examples	1
2.4	Incremental Concept Learning – Inductive Learning	1
2.5	Classification Techniques – Statistical Reasoning	1
2.6	Bayesian Classification	1
2.7	Bayesian Networks	1
2.8	Concept Learning- Version Spaces	1
2.9	Discrimination Trees.	1
3	Reasoning methods & Cognitive Modeling	
3.1	Reasoning by analogy – Explanation based reasoning – Case based reasoning	1
3.2	Constraint Satisfaction- Constraint Propagation- Temporal reasoning	1
3.3	Temporal Constraint Networks Spatial reasoning- Visual Spatial reasoning- Meta	1
5.5	reasoning	1
3.4	Learning by correcting mistakes AI ethics, Declarative/ logic-based computational	1
0.4	cognitive modelling	
3.5	Connectionist models of cognition - Bayesian models of cognition	1
3.6	Cognitive Models of Memory and Language	1
3.7	Computational models of episodic and semantic memory	1
3.8	Modelling psycholinguistics (with emphasis on lexical semantics) - towards deep	1
0.0	understanding	
3.9	Modelling the interaction of language, memory and learning.	1
4	Cognitive Development	
4.1	Child concept acquisition	1
4.2	Child language learning	1
4.3	Acquisition of arithmetic skills	1
4.4	Distributed Cognition and Learning	1
4.5	Simple and Complex Decision Making	1
4.6	Reasoning Under Uncertainty	1
Rev. No.3	/w.e.f. 22.07.2024 Approved Passed in BoS	a 1

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

BOARD OF STUD Department of Information K.S.Rangasamy College of Tiruchengode 637

	Total	45
5.0	cognition.	I
5.8	Neural network models of Cognitive Processes Dynamical systems and situated	1
5.7	Neural networks and distributed information processing	1
5.6	Applying the Symbolic Paradigm	1
0.0	thought	Z
5.5	Information Processing Models of the Mind Physical symbol systems and language of	2
5.4	Cognitive and Computational Models of Semantic Processing	1
5.3	Meaning and Entailment	1
5.2	Semantics in Cognitive Science	1
5.1	Knowledge Acquisition	1
5	Language and Semantic Processing	
4.9	Automated Natural Language Generation.	1
4.8	Natural Language Processing	1
4.7	Natural Language Understanding	1

Course Designers Mr.R.Arunkumar (rarunkumar@ksrct.ac.in)

60 PAC 001	English for Research Paper Writing	Category	L	Т	Ρ	Credit
00 PAC 001	English for Research Paper writing	AC	2	0	0	2

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Understand
CO2	Learn about what to write in each section	Remember
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Understand
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

mapping war rogramme outcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	2	3	3	2
CO3	3	3	2	3	3	3
CO4	3	3	2	3	2	2
CO5	3	3	2	2	2	3
3-Strong; 2-Medium; 1-Some						

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(Marks)				
	1	2			
Remember(Re)	30	30			
Understand(Un)	30	30			
Apply(Ap)	-	-			
Analyse(An)	-	-			
Evaluate(Ev)	-	-			
Create(Cr)	-	-			
Total	60	60			

			K.S.Ranga	asamy Colle	ege of Techno	logy – Autor	nomous R202	22	
			60 PAC		lish for Resea		Writing		
					mon to all Bra				
Sen	nester		lours/Wee		Total hrs	Credit		laximum Marks	
		L	T	P		C	CA	ES	Total
	/ 	2	0		30	0	100 ad Orden Dr.	-	100
			•	-	ning and Prep				
		•	• •	ind Sentence	es, Being Conc	ise and Rem	ioving Redund	ancy, Avoiding	[6]
	<u> </u>				abliabtic a Marca	Tio dia ang 11a		41 - 1 - 1	
					ghlighting Your	•	aging and Cri	ticizing,	[6]
	-	-	ism, Sectio	ns of a Pape	er, Abstracts, In	troduction			
	Writing			. Т :41 с. 1. с				4. I	
•			-		skills are neede		-		161
		-			eded when writ	ing a Review	v of the Litera	ature, Methods	
			ciusions, Tr	ne Final Che	CK				
	It Writin	•	·						[0]
			-		kills needed wh	-		lis are needed	[6]
	ication S		on, skills af	e needed w	hen writing the	Conclusions			
-		-	Diagioriam	how to one	uro popor io og	acad ac it a		ha tha first time	[6]
	nission	s, checking	Plagiansm	, now to ens	sure paper is as	good as it c			[6]
Subri	lission							Total Hours	30
Toyt	Pook(c)							Total Hours	30
Text	Book(s)		nalioh for M	Iriting Dooo	arch Papers, Sr	ringer New Y	Vark Dardraab	t Unidalbarg L	ndon
1.	2011	valiwork, E	nglish for w	mung Resea	arch Papers, Sp	binger new	FOR DOIGIECH		bhaon,
2		low to Mrite	and Dubli	h a Saiantif	ic Paper, Camb		aity Brood 200		
_					ic Paper, Came	Shuge Oniver	Sity Fless 200	0	
	rence(s)		for Colones	Vola Univa			arla Daaka) (0000	
1.					ersity Press (ava		<u> </u>		
2.				<u> </u>	lathematical Sc		<u> </u>		
3.		-		0	students of Eng	-		U18	
4.	Sudhir S	5. Pandhye,	English G	ammar and	Writing Skills, I	Notion Press	, 2017.		

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2%5

60 PAC 002	Disaster Management	Category	L	Т	Ρ	Credit
001 40 002	Disuster management	AC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Understand
CO2	Learn about what to write in each section	Remember
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Understand
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	2	3				
CO2	3	3	2	3	3	2				
CO3	3	3	2	3	3	3				
CO4	3	3	2	3	2	2				
CO5	3	3	2	2	2	3				
B-Strong; 2-Med	dium; 1-Some	•	•							

Assessment Patt	ern		
Bloom's Category	Continuous Tests	End Sem Examination (Marks)	
	1	2	(
Remember(Re)	30	30	30
Understand(Un)	30	30	40
Apply(Ap)	-	-	30
Analyse(An)	-	-	-
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

60 PAC 002 – Disaster Management Common to all Branches Semester Hours/Week Total hrs Credit Maximum Marks L T P C CA ES Total II 2 0 0 30 0 100 - 100 Introduction Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manade Disasters: Difference, Nature, Types and Magnitude. [6] [6] Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. [6] Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics [6] Disaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Pisaster Governmental and Community Preparedness. [6] Risk AssessmentDisaster Risk: Concept and Elements, Disaster			K.S.Ranga	samy Colle	ge of Technol	ogy – Autor	nomous R202	2	
Common to all Branches Semester Hours/Week Total hrs Credit Maximum Marks II I Total hrs Credit Maximum Marks Total hrs C CA ES Total II I 0 0 30 0 100 - 100 Introduction Disaster: Difference, Nature, Types and Magnitude. [6] [6] Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. [6] Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami, Post-Disaster Diseases and Epidemics [6] Disaster Preparedness and ManagementPreparedness. [6] Disaster or Hazard, Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Ather Agencies, Media Reports: Governmental and Community Preparedness. [6] Risk AssessmentDisaster Risk: Stituation. Techniques of Risk Assessment. Strategies for Survival. [6] [6]									
LTPCCAESTotalII200300100-100IntroductionDisaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.[6]Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.[6]Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics[6]Disaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.[6]Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.[6]1.Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Lt.d., New Delhi, 2009.[6]2Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company, 2007.[7] <th></th> <th></th> <th></th> <th>Com</th> <th>mon to all Brai</th> <th>nches</th> <th></th> <th></th> <th></th>				Com	mon to all Brai	nches			
II200300100-100IntroductionDisaster:Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.[6]Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.[6]Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics[6]Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.[6]Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment. Strategies for Survival.[6]1.Post-Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009.302Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.	Semester		Hours/Week	<	Total hrs	Credit			
Introduction [6] Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. [6] Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. [6] Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics [6] Disaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster Risk Iconcept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. [6] 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009. [6] 2 Nishitha Rai, Singh AK, "Disaster Management In India: Perspectives, issues and strategies "New Royal book Company, 2007.		L		Р				ES	Total
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Mammade Disasters: Difference, Nature, Types and Magnitude.[6]Repercussions of Disasters and HazardsEconomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.[6]Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics[6]Disaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.[6]Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.[6]1.Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009.[7]2Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company, 2007.[8]			0	0	30	0	100	-	100
Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. [6] Disaster Prone Areas In IndiaStudy of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Disease and Epidemics [6] Disaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. [6] Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. [6] 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009. 30 2 Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal" 2	Disaster: De	finition, Fact		-		ween Hazar	d and Disaste	er; Natural an	d [6]
and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics[6]Disaster Diseases and EpidemicsDisaster Preparedness and ManagementPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.[6]Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warring, People's Participation in Risk Assessment. Strategies for Survival.[6]Total Hours30Text Book(s):1.Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009.[6]2Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.[7]	Destruction Droughts Ar Industrial Ac	of Ecosyster d Famines, cidents, Oil S	n. Natural I Landslides Slicks And S	Disasters: E And Avalar pills, Outbre	Earthquakes, V nches, Man-ma eaks Of Disease	olcanisms, (ade disaster: e And Epider	Cyclones, Tsu Nuclear Rea nics, War And	namis, Floods ctor Meltdown Conflicts.	s, _{1,} [6]
Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. [6] Risk AssessmentDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. [6] Text Book(s): 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009. 30 2 Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007. State Sensing Company,2007.	and Avaland Post-Disaste	hes; Areas r Diseases a	Prone to C nd Epidemi	yclonic and cs	Coastal Hazar	ds with Spe	ecial Referenc	e To Tsunam	i; [6]
Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. [6] Total Hours 30 Total Hours 30 Total Hours 30 Image: Second Science Colspan="2">Second Science Col	Disaster or	lazard; Eval	uation of R	isk: Applica	ition of Remote	e Sensing, D	ata from Mete		
Text Book(s): 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009. 2 Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.	Disaster Ris	k Situation.	Fechniques	of Risk Ass	sessment, Glob	al Co-Opera			
1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009. 2 Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.								Total Hour	s 30
 Pvt. Ltd., New Delhi,2009. Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007. 	Text Book(s):							
² book Company,2007.	1			ition and Ma	anagement Text	And Case S	Studies", Deep	& Deep Publi	cation
Pataranco(s).		•		ter Manager	ment in India: P	erspectives,	issues and str	ategies "'New	Royal
	Reference(s):							
1. Sahni, Pardeep et.al.," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, 2001.	1. Sahni	Pardeep et.a	al.," Disaste	r Mitigation	Experiences an	d Reflection	s", Prentice Ha	all of India, 20	01.
2. Subramanian R,"Disaster Management", Vikas publishing Housing Pvt. Ltd., 2018.	2. Subra	manian R,"Di	saster Mana	agement", V	/ikas publishing	Housing Pv	t. Ltd., 2018.		
3. Chu-hua Kuei, Christian N Madu, Handbook of Disaster Management Risk Reduction & Management: Climate change and Natural Disaster, world scientific, 2017.	3					-	Risk Reductio	n & Managem	ent:
							ter Discourse,	Springer, 202	0.

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tituchengode 637 215

		Category	L	Т	Ρ	Credit
60 PAC 003	Constitution of India	AC	2	0	0	0

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional.
- Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in1917 and its impact on the initial drafting of the Indian Constitution.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Understand
CO2	Learn about what to write in each section	Remember
CO3	Understand the skills needed when writing a Title	Understand
CO4	Understand the skills needed when writing the Conclusion	Understand
CO5	Ensure the good quality of paper at very first-time submission	Apply

Mapping with Programme Outcomes

mapping i	nai i rogrammo	Catoonico				
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	2	3	3	2
CO3	3	3	2	3	3	3
CO4	3	3	2	3	2	2
CO5	3	3	2	2	2	3
Strong 2-Mec	lium 1-Some	•	•			

3-Strong; 2-Medium; 1-Some

Assessment Pattern					
Bloom's Category	Continuous Assessment Tests(Marks)				
	1	2			
Remember(Re)	30	30			
Understand(Un)	30	30			
Apply(Ap)	-	-			
Analyse(An)	-	-			
Evaluate(Ev)	-	-			
Create(Cr)	-	-			
Total	60	60			

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

		K	.S.Rangasa	amy Colleg	e of Technolog	y – Autonor	nous R2022		
					 Constitution 				
				Commo	on to all Branc		-		
Serr	nester	н	ours/Week		Total hrs	Credit		<u>laximum Ma</u>	
0011		L	Т	Р		С	CA	ES	Total
Liste	 	2	0	0	30	0	100	-	100
	-	king of The			ing)				[3]
Philos	sophy of	The Indian	Constitutio	on					[2]
Pream	nble, Sali	ent Features	;						[3]
Conto	ours of C	constitution	al Rights ar	nd Duties					
				-	eedom, Right ag Constitutional		-		161
Policy	, Fundar	nental Duties	•	ito, rtight to	Constitutional				
-		vernance							
		•			isqualifications, y, Appointment		-		161
	rs and Fi			ers, Judiciai	y, Appointment		or Judges, Q	ualifications,	
	Admini								
Electe		inistration h							
Hierar		ls and their erent depart	EO, Municip roles, CEC	al Corporati) Zila Panc	ance Municipal ion. Panchayat hayat: Position Role of Elected	raj: Introduct and role. B	ion, PRI: Zila lock level: Or	Panchayat. ganizational	[6]
Hierar grass	rchy (Diff	ls and their erent depart locracy.	EO, Municip roles, CEC	al Corporati) Zila Panc	ion. Panchayat hayat: Position	raj: Introduct and role. B	ion, PRI: Zila lock level: Or	Panchayat. ganizational	[6]
Hierar grass Electi Iectior	rchy (Diff root dem i on Com n Commi	ls and their erent depart ocracy. mission ssion: Role a	EO, Municip roles, CEC ments), Vill and Functior	al Corporati) Zila Panc age level: R ning. Chief E	ion. Panchayat hayat: Position Role of Elected Election Commis	raj: Introduct and role. B and Appointe	ion, PRI: Žila lock level: Or ed officials, Im	Panchayat. ganizational portance of	[6]
Hierar grass Electi Electior	rchy (Diff root dem i on Com n Commi	ls and their erent depart ocracy. mission	EO, Municip roles, CEC ments), Vill and Functior	al Corporati) Zila Panc age level: R ning. Chief E	ion. Panchayat hayat: Position Role of Elected Election Commis	raj: Introduct and role. B and Appointe	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational portance of	[6]
Hierar grass Election Stitute	rchy (Diff root dem i on Com n Commi e and Bo	ls and their erent depart nocracy. mission ssion: Role a dies for the v	EO, Municip roles, CEC ments), Vill and Functior	al Corporati) Zila Panc age level: R ning. Chief E	ion. Panchayat hayat: Position Role of Elected Election Commis	raj: Introduct and role. B and Appointe	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election Institute	rchy (Diff root dem ion Com n Commi e and Bo Book(s):	ls and their erent depart nocracy. mission ssion: Role a dies for the v	EO, Municip roles, CEC ments), Vill and Functior velfare of SC	al Corporati) Zila Panc age level: R hing. Chief E C/ST/OBC a	ion. Panchayat hayat: Position Role of Elected Election Commis	raj: Introduct and role. B and Appointe ssioner and E	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election Ilection Stitute Text E 1.	rchy (Diff root dem ion Com n Commi e and Bo Book(s): The Cor	Is and their erent depart nocracy. mission ssion: Role a dies for the v	EO, Municip roles, CEC ments), Vill and Functior velfare of SC	al Corporati) Zila Panc age level: R hing. Chief E C/ST/OBC a Bare Act),Gc	ion. Panchayat hayat: Position Role of Elected Election Commis Ind women.	raj: Introduct and role. B and Appointe ssioner and E cation.	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election nstitute Text E 1. 2	rchy (Diff root dem ion Com n Commi e and Bo Book(s): The Cor	Is and their erent depart nocracy. mission ssion: Role a dies for the v	EO, Municip roles, CEC ments), Vill and Functior velfare of SC	al Corporati) Zila Panc age level: R hing. Chief E C/ST/OBC a Bare Act),Gc	ion. Panchayat hayat: Position Role of Elected Election Commis and women.	raj: Introduct and role. B and Appointe ssioner and E cation.	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election Institute Text E 1. 2 Referen	rchy (Diff root dem ion Com n Commi e and Bo Book(s): The Cor Busi S N ence(s):	Is and their erent depart nocracy. mission ssion: Role a dies for the v nstitution of In I, Ambedkar	EO, Municip roles, CEC ments), Vill and Functior velfare of SC ndia,1950 (E B R, "Frami	al Corporati) Zila Panc age level: R hing. Chief E C/ST/OBC a Bare Act),Gc ng of Indian	ion. Panchayat hayat: Position Role of Elected Election Commis and women.	raj: Introduct and role. B and Appointe ssioner and E cation. st Edition, 20	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election Institute 1. 2 Referent 1.	rchy (Diff root dem ion Com n Commi e and Bo Book(s): The Cor Busi S N ence(s): Jain, M	Is and their erent depart nocracy. mission ssion: Role a dies for the v nstitution of Ir I, Ambedkar P, "Indian Co	EO, Municip roles, CEC ments), Vill and Functior velfare of SC ndia,1950 (E B R, "Frami onstitution La	al Corporati) Zila Panc age level: R hing. Chief E C/ST/OBC a Bare Act),Gc ng of Indian	ion. Panchayat hayat: Position Role of Elected Election Commis and women.	raj: Introduct and role. B and Appointe ssioner and E cation. st Edition, 20 s,2014	ion, PRI: Žila lock level: Or ed officials, Im lection Comm	Panchayat. ganizational nportance of issioners -	[6]
Hierar grass Election nstitute 1. 2 Referen 1. 2.	rchy (Diff root dem ion Com n Commi e and Bo Book(s): The Cor Busi S N ence(s): Jain, M Basu, D	Is and their erent depart nocracy. mission ssion: Role a dies for the v nstitution of In I, Ambedkar P, "Indian Cc D, "Introduc	EO, Municip roles, CEC ments), Vill and Functior velfare of SC ndia,1950 (E B R, "Frami onstitution La tion to the C	al Corporati) Zila Panc age level: F hing. Chief E C/ST/OBC a Bare Act),Gc ng of Indian aw", 7th Edit onstitution c	ion. Panchayat hayat: Position Role of Elected Election Commis and women. overnment Publi Constitution",1	raj: Introduct and role. B and Appoint ssioner and E cation. st Edition, 20 s,2014 Nexis, 2015.	ion, PRI: Žila lock level: Or ed officials, Im lection Comm 15.	Panchayat. ganizational nportance of issioners -	[6]

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2%5

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE-637215

(An Autonomous Institution affiliated to Anna University)

M. Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2024 - 2025)

THIRD SEMESTER

S.No.	Course	Name of the Course		Weight	age of Mark	Minimum Marks for Pass in End Semester Exam			
3.110.	Code		Internal Exam	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total	
	THEORY								
1.	60 PDS 301	Deep Learning	2	40	60	100	45	100	
2.	60 PDS E4*	Professional Elective IV	2	40	60	100	45	100	
3.	60 PDS E5*	Professional Elective V	2	40	60	100	45	100	
4.	60 PDS E6*	Professional Elective VI	2	40	60	100	45	100	
	PRCTICAL								
5.	60 PDS 3P1	Project Work Phase - I	2	100		100		100	

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination.

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Timichengode 637 215

60 PDS 301	Doon Loorning	Category	L	Т	Р	Credit
00 PD3 301	Deep Learning	PC	3	1	0	4

Objective

- To learn the basic concepts of deep learning
- To familiarize the different deep learning architectures
- To provide connection between the concepts of deep learning in Genomics and Biomedicine
- To develop the skill to apply data driven techniques in the Biomedical domain
- To implement NLP applications using deep learning algorithms

Prerequisite

Basic knowledge of Probability & Statistics, Artificial Intelligence and Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explore the fundamentals of deep learning implementation	Understand
CO2	Analyse different deep learning architectures	Analyse
CO3	Apply the role of Deep learning in Genomics and Biomedicine	Apply
CO4	Implement different deep learning architectures for point of care disease diagnosis	Apply
CO5	Utilize different deep learning architectures to solve real-time NLP problems	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	3	2	2		
CO2	2	2	3	3	2	2		
CO3	2	2	3	3	2	2		
CO4	2	2	3	3	2	2		
CO5	2	2	3	3	2	2		
	3-Strong 2-Medium 1-Some							

3-Strong;2-Medium;1-Some

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	20	20	20
Understand (Un)	20	20	30
Apply (Ap)	-	20	30
Analyse (An)	20	-	20
Evaluate (Ev)	-	-	-
Create (Cr)	-	-	-

	٢	(.S.Rangasa	amy College	of Technolog	y – Autono	omous R202	2	
			60 PDS 3	301 - DEEP LE	ARNING			
			PDS: M.1	FECH DATA S	CIENCE			
		Hours / Wee	ek		Credit		Maximum Marks	
Semester	L	Т	P	Total hrs	C	CA	ES	Total
	3	1	0	60	4	40	60	100
Introduction to								
							ack Propagation	[9]
				istics for Avoid	ing Bad Lo	ocal Minima	- Heuristics for	[0]
Faster Training			pout					
Deep Learning						- <i>,</i>		
							Learning –Long	[0]
							uto encoders –	[9]
	arse – Der	noising –Co	ontractive- v	ariational Auto	encoders	a – Adversa	arial Generative	
Networks								
Deep Learning				for Conomics	Pocurro	St NINI Aut	oen coders and	
							- imaging and	[9]
				t Learning drug				
Deep Learning				t Learning urug	uiscovery		62	
				ural Networks		vnet Google	e net for visual	
								[9]
perception tasks- Point of care disease diagnosis using CNN – Capsule Network- Generative Adversarial Networks - Case Studies								
Deep Learning								
		ons - N-gram	ns - Languag	e modellina - F	Part-of-Spe	ech Tagging	- Named Entity	
							nal Semantics -	
							erse Document	
							tworks for text	[9]
classification -								
Practice:								
			ttp://deeplear	ning.net/dataset	s/			[15]
	processing u							
			ion, etc) using	g RNN				
	lassification u							
	nent Classific		INN					
	se Diagnosis							
7. Deep l	learning in ge	nomics					AF . AF/Tutorial)	60
Taxt baak(a)							45+15(Tutorial)	60
Text book(s)		ahua Danai		muille "Deere Le		T Dress 004	7	
				Irville, "Deep Le				
2. Adam G		Patterson, I	Jeep Learnin	ng: A Practitione	ers Approa	ch, ORelliy,	2016.	
Reference(s):				" Moneire Duk	liantiana	010		
Reference(s):1.Francois	s Chollet, "D			n", Manning Put			hing Logration Of	000
Reference(s):1.Francois2.Yoshua	s Chollet, "Do Bengio, "Lea	arning Deep	Architecture	s for AI", Found	lations & T	rends in Mac	hine Learning, 20	
Reference(s):1.Francois2.Yoshua3.NicholasMachine	s Chollet, "De Bengio, "Lea s Locascio e Intelligence	arning Deep and Nikhil Algorithms	Architecture Buduma "F ', OReilly, 20	s for Al", Found undamentals of 17.	ations & Ti of Deep L	rends in Mac .earning: De	esigning Next-Ge	neration
Reference(s):1.Francois2.Yoshua3.NicholasMachine	s Chollet, "De Bengio, "Lea s Locascio e Intelligence	arning Deep and Nikhil Algorithms	Architecture Buduma "F ', OReilly, 20	s for Al", Found undamentals of 17.	ations & Ti of Deep L	rends in Mac .earning: De		neration

CHAIRMAN BOARD OF STUDIES Department of information Techn K.S.Rangasamy College of Tech Tiruchengode 637 2 %

S.No.	Торіс	No.of Hours
1	Introduction to Deep Learning	
1.1	History of Deep learning	1
1.2	Feed Forward Neural Networks	1
1.3	Gradient Descent	1
1.4	Back Propagation Algorithm	1
1.5	Vanishing Gradient problem	1
1.6	Heuristics for Avoiding Bad Local Minima	1
1.7	Heuristics for Faster Training	1
1.8	Regularization	1
1.9	Dropout	1
2	Deep Learning Architectures	
2.1	Convolutional Neural Networks Architectures	1
2.2	Convolution – Pooling Layers	1
2.3	Transfer Learning	1
2.4	Long Short Term Memory, Gated Recurrent Units	1
2.5	Encoder/Decoder Architectures	1
2.6	Autoencoders	1
2.7	Standard- Sparse – Denoising , Contractive	1
2.8	Variational Autoencoders	1
2.9	Adversarial Generative Networks	1
3	Deep Learning in Genomics and Biomedicine	
3.1	Genomics	1
3.2	DenseNets and Convolutional Nets for Genomics	1
3.3	Recurrent NN	2
3.4	Autoencoders and representation learning	1
3.5	Generative Models	1
3.6	Drug Discovery and protein structure: - imaging and electronic medical records	1
3.7	MoleculeNet	1
3.8	One shot Learning drug discovery	1
3.9	Case Studies	1
4	Deep Learning for Biomedical Data Analysis	
4.1	Understanding and Visualizing Convolutional Neural Networks	1
4.2	Lenet, Alexnet	2
4.3	GoogleNet for Visual perception tasks	2
4.4	Point of care disease diagnosis using CNN	1
4.5	Capsule Network	1
4.6	Generative Adversarial Networks	1
4.7	Case Studies	1
5	Deep Learning for NLP	
5.1	Words - Regular Expressions - N-grams	1
5.2	Language modelling - Part-of-Speech Tagging -	1
5.3	Named Entity Recognition	1
5.4	Topic classification - Syntactic Parsing -Dependency Parsing	1
5.5	Computational Semantics - Lexical Semantics - Vector space models - Bag-of-Words	2

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

M.Tech(Data Science)-Degree Programme 2024-2025

	Total	45 + 15 = 60
P.7	Deep learning in genomics	3
P.6	Disease Diagnosis using CNN	3
P.5	Sentiment Classification using RNN	2
P.4	Text classification using RNN	2
P.3	Text analysis (Next word prediction, etc) using RNN	2
P.2	Image processing using CNN	2
P.1	Collect data sets from the url : http://deeplearning.net/datasets/	1
Practic	e de la constante de	
5.8	Machine Translation	1
5.7	Transformer networks - Convolutional Neural Networks for text classification	1
5.6	Term Frequency - Inverse Document Frequency - Attention mechanism	1

Course Designers

Dr.J.Nithya - nithyaj@ksrct.ac.in

60 PDS E41	Pattorn Pacagnition	Category	L	Т	Р	Credit
00 PD3 E41	Pattern Recognition	PC	3	0	0	3
Objectives						

Objectives

- •To learn about supervised and unsupervised pattern classifiers
- To analyze the different clustering concepts
- To familiarize the different feature extraction and selection techniques
- To explore the role of Hidden Markov models and SVM
- To investigate the application of fuzzy logic and genetic algorithm in pattern recognition

Prerequisite

Basic knowledge of Digital logic circuit, Machine Learning, Cloud Computing.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Interpret the mathematics related to Pattern recognition	Apply
CO2	Analyse the behavior of Clustering and Classification	Analyse
CO3	Apply methods for feature extraction and selection	Apply
CO4	Develop the models using support vector machines	Apply
CO5	Apply the recent advances in pattern recognition	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	3	2
CO2	2	2	3	3	3	-
CO3	2	2	3	3	3	-
CO4	2	2	3	2	3	-
CO5	2	2	3	3	2	-
		•	-			

3-Strong;2-Medium;1-Some

Assessment Pattern

	Continuous Asses			
Bloom's Category			End Sem Examination	
	1	2	(Marks)	
Remember (Re)	10	20	20	
Understand (Un)	10	20	20	
Apply (Ap)	20	20	40	
Analyse (An)	20	-	20	
Evaluate (Ev)	-	-	-	
Create (Cr)	-	-	-	

CHAIRMAIN BOARD 3F STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tinichengode 637 2*5

	К.			Technology –		us R2022		
				attern Recogn				
PDS: M.TECH DATA SCIENCE								
Semester		Hours/Week		Total hrs	Credit		laximum Mar	
	<u> </u>	T	Р		С	CA	ES	Total
	3	0	0	45	3	40	60	100
equired for the examination of t	hours given aga or each topic base nations shall not d	ed on impor	iance and dep	oth of coverage				
Introduct – Superv Estimatio	Classifier ion and Mathema ised learning –Pa in – Pattern classi	rametric est	imation – Max	kimum Likelihoo	d Estimation	n – Bayesi	an paramete	
Hierarch	g for unsupervise cal clustering – G	raph theoret	ic approach to	pattern Cluster				[9]
KL Trans formal gr	Extraction and S sforms – Feature ammars - Syntact	selection th	rough function	nal approximati grammars - Str			-Elements o	f [9]
	Markov Models a chines – Hidden I				– Support v	ector Mac	hine –Feature	e [9]
Fuzzy lo	Advances gic – Fuzzy Patte zzy Pattern Classi			assification usin	ig Genetic A	Igorithms	– Case Study	/ [9]
							Total Hours	s 45
Textboo	k(s):							
	arasimha Murthy a			•				
2. Rich	ard O. Duda, Pete	er E. Hard, D	avid G. Stork	, " Pattern Reco	gnition", Sec	cond Editic	on, John Wile	/& Sons,
Referen	ce(s):							
1. CM	Bishop, 'Pattern F	Recognition a	and Machine L	earning', Spring	ger, 2010.			
2. Davi	d Barber,'Bayesia	n Reasoning	g and Machine	Learning', Carr	nbridge Unive	ersity Pres	s, 2019.	
	ard O. Duda, 'Pat	ern Classific	ation', Second	d Edition, JohnV	- Vilev& Sons.	2000.		
⊿ Valli	appa Lakshmanar nd Machine Learn	n, Martin Go	erner, Ryan G	illard, 'Practical	Machine Le		Computer Vi	sion: End

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tituchengode 637 215

S.No.	Торіс	No. of Hours
1.0	Pattern Classifier	
1.1	Introduction and Mathematical preliminaries	1
1.2	Overview of Pattern recognition	1
1.3	Discriminant functions	1
1.4	Supervised learning	1
1.5	Parametric estimation	1
1.6	Maximum Likelihood Estimation	1
1.7	Bayesian parameter Estimation	1
1.8	Pattern classification by distance functions	1
1.9	Minimum distance pattern classifier	1
2.0	Clustering	
2.1	Clustering for unsupervised learning and classification	2
2.2	Clustering concept	1
2.3	C Means algorithm	2
2.4	Hierarchical clustering	1
2.5	Graph theoretic approach to pattern Clustering	2
2.6	Validity of Clusters	1
3.0	Feature Extraction and Structural Pattern Recognition	
3.1	KL Transforms	1
3.2	Feature selection through functional approximation	2
3.3	Binary selection	1
3.4	Elements of formal grammars	2
3.5	Syntactic description	1
3.6	Stochastic grammars	1
3.7	Structural representation	1
4.0	Hidden Markov Models and Support Vector Machine	
4.1	State Machines	1
4.2	Hidden Markov Models	2
4.3	Training	2
4.4	Classification	1
4.5	Support vector Machine	2
4.6	Feature Selection	1
5.0	Recent Advances	
5.1	Fuzzy logic	1
5.2	Fuzzy Pattern Classifiers	2
5.3	Pattern Classification using Genetic Algorithms	3
5.4	Case Study Using Fuzzy Pattern Classifiers and Perception	3
	Total	45

Course Designers

1.Mr.R. Arukumar - rarunkumar@ksrct.ac.in

		Category	L	Т	Р	Credit
60 PDS E42	IoT Architecture and Computing	PE	3	0	0	3

Objectives

- To Understand the Architectural Overview of IoT
- To Understand the IoT Reference Architecture and Real World Design Constraints
- To Understand the various IoT Protocols (Datalink, Network, Transport, Session, Service
- To build an ecosystem of networked devices that can detect, touch, and interact
- To enables us to make use of all of the data created by IoT by allowing us to interact with our organization from anywhere, at any time

Prerequisite

Basic knowledge of

Course Outcomes

• On the successful completion of the course, students will be able to

CO1	Describe the term IoT in different contexts.	Remember,
CO2	Analyse various protocols for IoT.	Evaluate
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Create
CO4	Apply data analytics and use cloud offerings related to IoT.	Apply
CO5	Analyze applications of IoT in real time scenario	Analyse

Mapping with Programme Outcomes

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO1	2	3	3	2	3	2
CO2	3	3	3	2	3	2
CO3	2	3	3	2	3	2
CO4	3	3	3	2	3	2
CO5	3	3	3	2	3	2

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	20	10	20
Understand (Un)	00	10	10
Apply (Ap)	20	10	10
Analyse (An)	10	20	20
Evaluate (Ev)	10	10	10
Create (Cr)	00	00	30

K.S.Rangasamy College of Technology – Autonomous R2022						
60 PDS E42- IoT Architecture and Computing						
PDS: M.TECH DATA SCIENCE						
Hours / Week Credit Maximum Marks						
Semester L T P Total hrs C CA ES To	al					
III 3 0 0 45 3 40 60 10	0					
OVERVIEW						
IoT-An Architectural Overview- Building an architecture, Main design principles and						
needed capabilities, An IoT architecture outline, standards considerations. M2M and	[0]					
IoT Technology Fundamentals- Devices and gateways, Local and wide area	[9]					
networking, Data management, Business processes in IoT, Everything as a						
Service(XaaS), M2M and IoT Analytics, Knowledge Management						
IoT Architecture-State of the Art – Introduction, State of the art, Reference Model architecture, IoT reference						
Model - IoT Reference Architecture, Introduction Eulectional View Information View Deployment and						
Operational View, Other Relevant architectural views. Real-World Design Constraints- Introduction, [9]						
Technical Design constraints-hardware is popular again, Data representation and visualization, Interaction						
and remote control.						
IOT DATA LINK LAYER, NETWORK LAYER, TRANSPORT PROTOCOLS						
PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless HART,Z-						
Wave, Bluetooth Low Energy, Zig bee Smart Energy, DASH7 - Network Layer-IPv4, IPv6, 6LoWPAN,	[9]					
6TISCH,ND, DHCP, ICMP, RPL, CORPL, CARP- Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)-						
(TLS, DTLS) – Application Protocols for IoT: UPnP, CoAP, MQTT, XMPP. SCADA, Web Socket; IP-based protocols:						
6LowPAN, RPL; Authentication Protocols; IEEE 802.15.4	[9]					
Case study : Cloud-Based Smart-Facilities Management, Healthcare, Environment Monitoring System.	[9]					
Total Hours	<u>45</u>					
Text book(s):						
1. Bassi, Alessandro, et al, 'Enabling things to talk', Springer-Verlag Berlin An, 2016.						
David Hanes, Conzalo Salqueiro, Patrick Grossetete, Pohert Barton, Jerome Henny, 'JoT Eurodamentale:						
2. Networking Technologies, Protocols, and Use Cases for the Internet of Things', CISCO Press, 2017						
Reference(s):						
Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, 'Fro	m					
1. Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence', First Edition,						
Academic Press, 2014.						
2. Bernd Scholz-Reiter, Florian Michahelles, 'Architecting the Internet of Things', ISBN 978-3-642-19156-5	e-					
ISBN 978-3-642-19157-2, Springer						
3. Daniel Minoli, 'Building the Internet of Things with IPv6 and MIPv6: The Evolving World of	M2M					
Communications , ISBN: 978-1-118-47347-4, Willy Publications						
4. Vijay Madisetti and ArshdeepBahga, 'Internet of Things (A Hand Approach)', First Edition, VPT, 2014	s-on-					

S.No.	Торіс	No.of Hours		
1	OVERVIEW			
1.1	IoT-An Architectural Overview	1		
1.2	Building an architecture, Main design principles and needed capabilities			
1.3	An IoT architecture outline, standards considerations	1		
1.4	M2M and IoT Technology Fundamentals	1		
1.5	Devices and gateways, Local and wide area networking	1		
1.6	Data management, Business processes in IoT	1		
1.7	Everything as a Service(XaaS)	2		
1.8	M2M and IoT Analytics, Knowledge Management	1		
2	REFERENCE ARCHITECTURE			
2.1	IoT Architecture-State of the Art	1		
2.2	Introduction, State of the art, Reference Model architecture	1		
2.3	IoT reference Model - IoT Reference Architecture	1		
2.4	Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views	1		
2.5	Real-World Design Constraints	1		
2.6	Introduction, Technical Design constraints	1		
2.7	hardware is popular again	1		
2.8	Data representation and visualization	1		
2.9	Interaction and remote control	1		
3	IOT DATA LINK LAYER, NETWORK LAYER, TRANSPORT PROTOCOLS	1		
3.1	PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15)	1		
3.2	Wireless HART,Z-Wave, Bluetooth Low Energy	2		
3.3	Zig bee Smart Energy	1		
3.4	DASH7 - Network Layer-IPv4,IPv6	1		
3.5	6LoWPAN, 6TISCH,ND, DHCP, ICMP	1		
3.6	RPL, CORPL, CARP	1		
3.7	Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)-(TLS, DTLS	2		
4	APPLICATION PROTOCOLS FOR IOT	1		
4.1	UPnP, COAP, MQTT	2		
4.2	XMPP. SCADA, Web Socket	1		
4.3	IP-based protocols	1		
4.4	6LoWPAN, RPL	1		
4.5	Authentication Protocols	2		
4.6 5	IEEE 802.15.4 CASE STUDY	1		
5 .1		1		
5.1	Cloud-Based Smart	2		
<u>5.2</u> 5.3	Facilities Management Healthcare	2		
<u>5.3</u> 5.4	Environment Monitoring System	2		
0.4	Total			

60 PDS E43	Advanced Web Analytics	Category	L	Т	Р	Credit
00 PD3 E43	Auvaliceu web Allalytics	PE	3	0	0	3

Objective

- To understand the Web analytics platform, and their evolution.
- To learn about the various Data Streams Data.
- To learn about the benefit of surveys and capturing of data.
- To understand Common metrics of web as well as KPI related concepts.
- To learn about the various web analytics versions.

Prerequisite

Basic knowledge of Web Technology, Data Mining, Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the Web analytics platform, and their evolution.	Understand
CO2	Apply the various Data Streams Data.	Apply
CO3	Know how the survey of capturing of data will benefit.	Understand
CO4	Understand Common metrics of web as well as KPI related concepts.	Understand
CO5	Apply various web analytics versions in existence.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	2	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	3	3	2	2
CO5	3	2	3	3	2	2
		3-Stron	a·2-Medium·1-S	ome		

3-Strong;2-Medium;1-Some

	Continuous Asses	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	20	30	40
Understand(Un)	20	30	40
Apply(Ap)	20	-	20
Analyse(An)	-	-	-
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

		K.S.Rand	gasamy C	ollege of T	Fechnology –	Autonomous I	R2022		
					anced Web A				
PDS: M.TECH DATA SCIENCE									
	Semester	ŀ	Hours/Wee	ek	Total Hrs	Credit	Maxi	mum Marl	ks
		L	Т	Р		С	CA	ES	Total
	III	3	0	0	45	3	40	60	100
req the	e: The hours given ag uired for each topic ba examinations shall no	ased on in	nportance	and depth	of coverage re				ns in
De ch sit	roduction finition, Process, Key aracterization terms, e web; Web analyti nitations.	Content c	haracteriza	ation terms	s, Conversion r	netrics; Catego	ories: Offsite v	web, On	[9]
Pao dat Bei	a Collection and Qu sket Sniffing; Outcom a: Mindset, Organiza hefits of heuristic aluations.	es Data: E	E-commer	ce, Lead g	eneration, Bra	nd/Advocacy a	nd Support; F	Research	[9]
Cap data	b Analytic fundamer oturing data: Web logs a, Innovation, Integra ntifying unique page d	s or Java tion, selec	cting optim	nal web an	alytic tool, und				[9]
C or Pag bou Cus	b Metrics nmon metrics: Hits, je/visit, Average time nce rates, optimizing tom campaigns, Con spective of KPI, Uses	on site, No adwords tent repor	ew visits; (campaig	Optimizations; Real ti	n (e-commerce me report, Auc	e, non e-comm dience report,	erce sites): In Traffic source	nproving e report,	[9]
We We ana	b analytics 2.0 b analytics 1.0, Limita lysis : CI data source ic analysis: Comparir	ations of v s, Toolbai	r data, Pai	nel data ,IS	SP data, Searc	h engine data,	Hybrid data,	Website	[9]
	· ·	0 0				•		al Hours	45
Te>	t Books:								
1.	Clifton B., Advanced	Web Met	trics with C	Google Ana	lytics, Wiley P	ublishing, Inc. (2010), 2nd eo	d.	
2.	Kaushik A., Web An Publishing, Inc. (201	alytics 2.0) The Art o						ey
Ref	erence(s):								
1.	Sterne J., Web Metr	ics: Prove	n methods	s for measu	uring web site s	success, John \	Niley and So	ns (2002),	1sted
1.									
2.	Michael Beasley.,Pr Users, 2013.	actical We	eb Analytic	s for User	Experience, H	low Analytics ca	an help you L	Inderstan	d Your
			•		•	•			d Your

S.No.	Торіс	No of Hours
1	Introduction	
1.1	Definition, Process, Key terms	1
1.2	Site references, Keywords and Key phrases	1
1.3	building block terms	1
1.4	Visit characterization terms	1
1.5	Content characterization terms	1
1.6	Conversion metrics	1
1.7	Categories: Offsite web, On site web	1
1.8	Web analytics platform, Web analytics evolution	1
1.9	Need for web analytics, Advantages, Limitations	1
2	Data Collection and Qualitative Analysis	
2.1	Clickstream Data: Web logs, Web Beacons	1
2.2	JavaScript tags, Packet Sniffing	1
2.3	Outcomes Data: E-commerce, Lead generation	1
2.4	Brand/Advocacy and Support	1
2.5	Research data: Mindset	1
2.6	Organizational structure	1
2.7	Timing, Heuristic evaluations	1
2.8	Conducting a heuristic evaluation	1
2.9	Benefits of heuristic	1
2.9	Evaluations.	1
3	Web Analytic fundamentals	
3.1	Capturing data: Web logs or Java Scripts tags	1
3.2	Separate data serving and data capture	1
3.3	Type and size of data	1
3.4	Integration	1
3.5	Innovation	1
3.6	selecting optimal web analytic tool	1
3.7	understanding clickstream data quality	1
3.8	Identifying unique page definition	1
3.9	Using cookies, Link coding issues.	1
4	Web Metrics	
4.1	Common metrics: Hits, Page views, Visits	1
4.2	Unique visitors, Unique page views, Bounce, Bounce rate, Page/visit, Average time on site, new visits	2
4.3	Optimization (e-commerce, non-e-commerce sites)	1

R.P-M

CHAIRMAN BOARD dF STUDIES Oppartment of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 215

	Total	45
5.6	Analyzing competitive site overlap and opportunities.	2
5.5	Comparing long term traffic trends	2
5.4	Website traffic analysis	1
5.3	ISP data, Search engine data, Hybrid data	1
5.2	Introduction to analytic 2.0, Competitive intelligence analysis : CI data sources, Toolbar data, Panel data	2
5.1	Web analytics 1.0, Limitations of web analytics 1.0	1
5	Web analytics 2.0	
4.8	Need for KPI, Perspective of KPI, Uses of KPI.	1
4.7	Introduction to KPI, characteristics	1
4.6	Traffic source report, Custom campaigns, Content report, Google analytics	1
4.5	Real time report, Audience report	1
4.4	Improving bounce rates, optimizing ad words campaigns	1

Course Designers

1.Ms.R.Loga Priya - logapriyar@ksrct.ac.in

	Stroom Brococcing and Apolytics	Category	L	Т	Р	Credit
60 PDS E44	Stream Processing and Analytics	PE	3	0	0	3

Objective

- To develop adaptive and responsive applications.
- To help enterprises improve real-time business analytics
- To facilitate faster decisions
- To improve decision-making with increased context
- To create new applications that use a wider variety of data sources.

Prerequisite

On the successful completion of the course, students will be able to

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the need for stream processing	Understand
CO2	Comprehend the architectures of stream processing	Understand
CO3	Explain and run Distributed Processing and Resilience Model	Understand
CO4	Design effective streaming solutions using Structured Streaming	Apply
CO5	Design effective streaming solutions using Spark Streaming	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3	3	2	2		
CO2	3	2	3	3	2	2		
CO3	3	2	3	3	2	2		
CO4	3	2	3	3	2	2		
CO5	3	2	3	3	2	2		
3-Strong:2-Medium:1-Some								

3-Strong;2-Medium;1-Some

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	30	20	40
Understand(Un)	30	20	40
Apply(Ap)	-	20	20
Analyse(An)	-	-	-
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

		K.S.Ran	gasamy (College of	Technology	- Autonomous	R2022		
						and Analytics			
			PD	S: M.TEC	H DATA SCI	ENCE	-		
	Semester	F	lours/Wee	ek	Total Hrs	Credit	Ma	aximum Mark	S
		L	Т	Р		С	CA	ES	Total
	III	3	0	0	45	3	40	60	100
	te: The hours given a								
	uired for each topic b						arks allotte	ed for questio	ns in
	examinations shall n				iours indicated				
	troduction To Stream				D		(0)	D	
	Indamentals of Strea								[0]
	caling Up Data Proc ocessing Model: Sou								[9]
	id Aggregations- Wind								
	eaming Architecture		-yalions -	Stateless		Tocessing- The		ine.	
	mponents of a Data		Architect	ural Mode	le. The Llee o	of a Batch-Proc	ossina Con	nnonent in a	
	eaming Application- I								
	ark as a Stream-Pro								
	ented Processing- Fa					onderstanding	g Laterioy	rnoughput	
	stributed Processing								
	ark's Distributed Prod				ache Spark w	ith a Cluster M	lanager- S	spark's Own	
	ster Manager - Resili								[0]
	ching and One-Eleme								[9]
Dyr	namic Batch Interval	- Structur	ed Stream	ming Proc	essing Model	. Spark's Resili	ence Mode	el: Resilient	
Dis	tributed Datasets in S	Spark - Spa	ark Comp	onents - S	park's Fault-T	olerance Guara	ntees.		
	uctured Streaming								
	roducing Structured S								[9]
	Action – Structured S	Streaming	Sources	 Structu 	red Streaming	g Sinks - Event	Time- Ba	ised Stream	[0]
	cessing.								
	ark Streaming							0.0000	
	roducing Spark Stre								[9]
	ecution Model - Spark rking with Spark SQL							Processing-	
**0	iking with opark oge		pointing	Morntoning	g opant offcan	ning i choiman		Total Hours	45
Tex	t Books:								-10
1.	Gerard Maas and Fi	rançois G	arillot , "S	tream Prod	cessing with A	pache Spark: M	astering Str	ructured Stre	aming
	and Spark Streamin						-		-
2.	Anindita Basak, Kris				rphy, Manpree	et Singh, "Strear	n Analytics	with Microsc	oft
	Azure", Packt Publis	shing, Dec	cember 20)17.					
	erence(s):								
1.	Henrique C. M. And			•	•			rocessing:	
~	Application Design,								
2.	Bryon Ellis, "Real-Ti 2014	ime Analy	tics: Lech	niques to A	Analyze and V	isualize Stream	ing Data", V	wiley, 1st edi	lion,
3.	ub.com/stream-proce	essing-witl	h-spark						
	w.edx.org/course/pro			ata-stroom	s-in-azura				
ч.	w.cux.org/course/pro	uccomy-re	Jai-unie-u	aia-siitali					

S.No. Topic No of Hours 1 Introduction To Stream Processing Model Fundamentals of Stream Processing 1.1 1 What Is Stream Processing 1.2 1 1.3 Examples of Stream Processing 1 Scaling Up Data Processing 1.4 1 1.5 **Distributed Stream Processing** 1 1.6 Introducing Apache Spark. Stream 1 1.7 Processing Model: Sources and Sinks 1 Immutable Streams Defined from One Another Transformations and Aggregations 1.8 1 1.9 Window Aggregations - Stateless and Stateful Processing- The Effect of Time. 1 Streaming Architectures 2 2.1 Components of a Data Platform- Architectural Models 1 2.2 The Use of a Batch-Processing Component in a Streaming Application 1 2.3 **Referential Streaming Architectures** 1 2.4 Streaming Versus Batch Algorithms 1 2.5 Apache Spark as a Stream 1 2.6 Processing Engine: Spark's Memory Usage 1 2.7 Understanding Latency 1 2.8 **Throughput Oriented Processing** 1 2.9 Fast Implementation of Data Analysis 1 Distributed Processing And Resilience Model 3 3.1 Spark's Distributed Processing Model: Running Apache Spark with a Cluster Manager 1 3.2 Spark's Own Cluster Manager 1 3.3 Resilience and Fault Tolerance in a Distributed System 1 3.4 **Data Delivery Semantics** 1 Microbatching and One-Element-at-a-Time - Bringing Microbatch and One-Record-at 3.5 1 a- Time Closer 3.6 **Dynamic Batch Interval** 1 Structured Streaming Processing Model 3.7 1 Spark's Resilience Model 1 3.8 **Resilient Distributed Datasets in Spark** 3.9 1 4 Spark Components 4.1 Spark's Fault-Tolerance Guarantees. 1 4.2 Structured Streaming 2 4.3 Introducing Structured Streaming 1 The Structured Streaming Programming Model 4.4 1 Structured Streaming in Action 1 4.5 4.6 Structured Streaming Sources 1 4.7 Structured Streaming Sinks 1 4.8 **Event Time** 1 4.9 Based Stream Processing. 5 Spark Streaming 1 Introducing Spark Streaming 2 5.1 The Spark Streaming Programming Model 5.2 1 The Spark Streaming Execution Model 5.3 1 Approved Passed in BoS Rev. No.3/w.e.f. 22.07.2024 R.P-Meeting held on 24/05/2024in Academic Council Meeting

Course Contents and Lecture Schedule

held on 25/05/2024

CHAIRMAN BOARD OF STUDIES epartment of Information Technology. S.Rangasamy College of Technology. Tinuchengode 637 215

M.Tech(Data Science)-Degree Programme 2024-2025

5.4	Spark Streaming Sources	2
5.5	Spark Streaming Sinks	2
5.6	Time-Based Stream Processing	1
5.7	Working with Spark SQL – Checkpointing	1
5.8	Monitoring Spark Streaming	1
5.9	Performance Tuning	1
	Total	45

Course Designers

1.Mr.K.Saravanan (saravanank@ksrct.ac.in)

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tinichengode 637 215

	Ethics for Data Science	Category	L	Т	Р	Credit
60 PDS E45	Ethics for Data Science	PE	3	0	0	3

Objective

- To understand the ethical implications and responsibilities in data-driven decision-making.
- To learn about privacy, security, and data protection laws and practices.
- To identify, assess, and mitigate bias in algorithms and machine learning models.
- To comprehend the need for transparency and accountability in AI and automation systems.
- To apply ethical principles in real-world data science projects and audits.

Prerequisite

Basic knowledge of Data Science and Machine Learning concepts.

Course Outcome

On the successful completion of the course, students will be able to

CO1	Apply ethical frameworks to analyze and solve ethical dilemmas in data science.	Understand
CO2	Implement privacy-preserving techniques and adhere to global data protection laws.	Understand
CO3	Identify and mitigate bias in machine learning models for fair and just outcomes.	Understand
CO4	Ensure transparency and accountability in AI systems for responsible decision-making.	Apply
CO5	Conduct ethical audits and ensure continuous ethical monitoring of data science projects.	Apply

Mapping with Program Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	3	3	2	2	
CO2	3	2	3	3	2	2	
CO3	3	2	3	3	2	2	
CO4	3	2	3	3	2	2	
CO5	3	2	3	3	2	2	
3-Strong;2-Medium;1-Some							

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember(Re)	30	20	40
Understand(Un)	30	20	40
Apply(Ap)	-	20	20
Analyse(An)	-	-	-
Evaluate(Ev)	-	-	-
Create(Cr)	-	-	-

		K.S.Ran	gasamy (College of	Technology ·	- Autonomous	R2022		
					thics for Data				
	PDS: M.TECH DATA SCIENCE								
	Compoten	H	lours/Wee	ek	Total Line	Credit	Ma	aximum Marl	s
	Semester	L	Т	Р	Total Hrs	С	CA	ES	Total
	III	3	0	0	45	3	40	60	100
Intr	oduction to Data Sc	ience Eth	nics						
	ics in Data Science:								[9]
	ntology, and virtue					Usage: Transp		airness, and	[9]
acc	ountability,Case Stud	lies: Real-	world exa	mples of e	ethical challeng	ges in data scier	nce.		
	vacy and Data Prote								
Dat	a Privacy Concepts: I	Personal of	data, sens	itive data,	and privacy co	oncerns,Privacy	Models: k-	-Anonymity,	[9]
	erential privacy, and d								[0]
	tection laws,Ethical Is				aring: Respons	sibilities and cor	nsequences	S.	
	rness, Bias, and Dis								
	orithmic Bias: Types								
	rics such as equalize								
	s in datasets and algo	prithms,Et	hical Issue	es in Predi	ctive Analytics	: Impact on diffe	erent socia	I groups and	
	omunities countability and Trai	nenarone		istoms					
	countability in AI and I				l responsibility	in development	and denio	vment The	
	ck Box Problem: Chal								[9]
	Techniques and impo								[0]
	ulations for ethical AI		inouor du	noparonoj	,2411041 00101		andardo, ac	auto, and	
<u> </u>	ical Data Science in								
	ical Data Collection: I			ata owner	ship, and right	s.Social Implicat	tions of Da	ta Science:	
	act of data science or								[9]
	ietal impact, Ethical A								
data	a science projects,Ro	le of Ethic	cs Commit	tees: Revi	iew and oversi	ght of ethical co	ncerns in c	data science.	
								Total Hours	45
Тех	t Books:								
1.	C. Dwork, A. Roth, '			undations	of Differential	Privacy," Found	lations and	Trends in	
	Theoretical Computer Science, 2014.								
2.	Luciano Floridi, "The	e Ethics o	f Informat	ion," Oxfoi	rd University P	ress, 2013.			
Ref	erence(s):								
1.	Cathy O'Neil, "Weap			uction: How	w Big Data Inc	reases Inequalit	ty and Thre	eatens Demo	cracy,"
	Crown Publishing G								
2.	Virginia Eubanks, "A		g Inequali	ty: How Hi	igh-Tech Tools	Profile, Police,	and Punis	h the Poor,"	St.
	Martin's Press, 2018								
3.	Solon Barocas, Mo	ritz Hardt,	, Arvind N	arayanan,	"Fairness and	Machine Learn	ing," 2019.		

	60 PDS E51 Predictive Analytics for Internet of Things	Category	L	Т	Р	Credit
60 PDS E51		PE	3	0	0	3

Objectives

- To explain terminology, technology and applications of predictive analysis.
- To apply data preparation techniques and generate appropriate association rules.
- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.

Prerequisite

Basic knowledge of Internet of Things, Data Mining, Machine Learning.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain terminology, technology and applications of predictive analysis	Analyse
CO2	Apply data preparation techniques to effectively interpret big data.	Apply
CO3	Explain the concept of IoT.	Understand
CO4	Analyse various protocols for IoT.	Analyse
CO5	Design a PoC of an IoT system using Rasperry Pi/Arduino.	Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	3
CO2	3	3	2	2	2	3
CO3	3	2	2	2	2	3
CO4	3	2	2	2	2	3
CO5	3	3	2	2	2	3

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	10	10	20
Understand (Un)	10	10	20
Apply (Ap)	20	20	30
Analyse (An)	20	20	30
Evaluate (Ev)	-	-	-
Create (Cr)	-	-	-

	k	.S.Rangasa	my College	of Technology	v – Autonor	nous R20	22			
		60 PDS E		ive Analytics f		of Things	3			
	T		PDS: M.TE	CH DATA SC						
0	l	Hours/Week		T (()) ()	Credit	N	1aximum N	Marks		
Semester	L	Т	Р	Total hrs	С	CA	ES	Tota		
111	3	0	0	45	3	40	60	100)	
Introduction To Predictive Analytics Overview of Predictive Analytics- Setting Up the Problem - Data Understanding- Single Variable- Data Visualization in One Dimension- Data Visualization, Two or Higher Dimensions The Value of Statistical Significance- Pulling It All Together into a Data Audit.									[9]	
Data Prepa	ration and As	sociation Ru	les							
Parameter 3 Rules- Prob	Settings- How lems with Asso	the Data Is	Organized-	ation- Item se Measures of I assification Ru	nteresting F	Rules-Dep	loying As		[9]	
(IoTWF) and Edge and C Connecting	ⁱ Internet of Th d Alternative Io loud in IoT – F Smart Objects	oT models -	Simplified Io	ogies – IoT Ard T Architecture T ecosystem –	and Core lo	oT Functio	onal Stack	k -– Fog,	[9]	
lot Protoco	ls									
802.15.4e, Constrained Networks –	1901.2a, 802. Networks – O	11ah and Lo ptimizing IP f ansport Meth	RaWAN – I or IoT: From	s, topology and Network Layer 6LoWPAN to 6 isory Control a	: IP versior 6Lo, Routing	ns, Consti g over Low	rained No v Power ar	des and nd Lossy	[9]	
Design And	d Developmen	t								
Design Meth	nodology - Eml duino - Board	bedded comp		Microcontroller g - Raspberry					[9]	
							Tot	al Hours	45	
Text book	(s):									
^{1.} Wiley,	2014		2	ciples and Tec					-	
				setete, Rob Ba Cases for Intern					s:	
Reference(s):									
1. Jiawei	Han and Miche	eline Kamber	, Data Mining	g Concepts and	I Technique	s, Third E	dition, Else	evier, 2012		
2. Conrad	d Carlberg, 'Pre	edictive Analy	tics: Microso	oft Excel, 1st Ec	dition, Que F	Publishing	, 2012.			
				nings – A hands				ss, 2015		
-	Hersent, David			umi, 'The Intern					cols',	

S.No.	Торіс	No. of Hours
1.0	Introduction To Predictive Analytics	
1.1	Overview of Predictive Analytics	1
1.2	Setting Up the Problem	1
1.3	Data Understanding	2
1.4	Single Variable	1
1.5	Data Visualization in One Dimension	1
1.6	Data Visualization, Two or Higher Dimensions	1
1.7	The Value of Statistical Significance	1
1.8	Pulling It All Together into a Data Audit	1
2.0	Data Preparation and Association Rules	
2.1	Data Preparation	1
2.2	Variable Cleaning-Feature Creation	1
2.3	Item sets and Association Rules	1
2.4	Terminology- Parameter Settings	1
2.5	How the Data Is Organized- Measures of Interesting Rules	1
2.6	Deploying Association Rules	1
2.7	Problems with Association Rules	1
2.8	Building Classification Rules from Association Rules	2
3.0	Fundamentals Of lot	
3.1	Evolution of Internet of Things- Enabling Technologies	1
3.2	IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT models	1
3.3	Simplified IoT Architecture and Core IoT Functional Stack	2
3.4	Fog, Edge and Cloud in IoT	2
3.5	Functional blocks of an IoT ecosystem	2
3.6	Sensors, Actuators, Smart Objects and Connecting Smart Objects	1
4.0	lot Protocols	
4.1	IoT Access Technologies: Physical and MAC layers	1
4.2	topology and Security of IEEE 802.15.4	1
4.3	802.15.4g, 802.15.4e	1
4.4	1901.2a, 802.11ah and LoRaWAN	1
4.5	Network Layer: IP versions, Constrained Nodes and Constrained Networks	1
4.6	Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks	1
4.7	Application Transport Methods: Supervisory Control and Data Acquisition	1
4.8	Application Layer Protocols: CoAP and MQTT	2
5.0	Design And Development	
5.1	Design Methodology	1
5.2	Embedded computing logic	2
5.3	Microcontroller, System on Chips	1
5.4	IoT system building blocks	1
5.5	Arduino	1
5.6	Board details, IDE programming	1
5.7	Raspberry Pi	1
5.8	Interfaces and Raspberry Pi with Python Programming	1
	Total	45

Course Designers

Gayathri.S, AP/IT.

	Data Governance And Quality	Category	L	Т	Р	Credit
60 PDS E52	Data Governance And Quality	PE	3	0	0	3

Objectives

- To define basic concepts of kernal in Machine Learning
- To recognize different methods of using kernal
- To use different types of Datasets for solving different problems.
- To examine different supervised learning using kernals
- To compare the usage of different unsupervised learning for continuous data.

Prerequisite

Basic knowledge of Higher Secondary Mathematics& Machine Learning.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the need for machine learning for solving problem	Understand
CO2	Recognize the basic patterns of data and choose right machine learning model.	Remember
CO3	Apply the apt linear model for solving non linear problem.	Apply
CO4	Implement Supervised learning for solving machine learning problems using kernal.	Apply
CO5	Demonstrate the usage of Unsupervised learning for different types of Datasets.	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	3	3	2	2		
CO2	2	3	3	3	2	2		
CO3	2	3	3	3	2	2		
CO4	2	3	3	3	2	2		
CO5	2	3	3	3	2	2		
3-Strong;2-Medium;1-Some								

	Continuous Ass	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	30	20	20
Understand (Un)	30	20	30
Apply (Ap)	-	20	30
Analyse (An)	-	-	20
Evaluate (Ev)	-	-	-
Create (Cr)	-	-	-

		K			Technology –		us R2022		
					Governance an				
				PDS: M.TEC	H DATA SCIEN	1			
Some	otor		Hours/Week		Total hrs	Credit	_	arks	
Seme		L	Т	P		С	CA	ES	Total
		3	0	0	45	3	40	60	100
Basi of Ke		achine Learnir ethods – Kern			Kernal Methods works – Non lin				
Kerr Posi with kern	iels an tive def RKHS el learn	d Reproducin finiteness kern norms - The ke ing,	al - Reprodu	cing Kernel F	RKHS) Hilbert Spaces shift-invariant k				
Prino Anal	ciple Co ysis - S	pectral Cluster	ing - Adaptive		chine - Gaussia el Perceptron -			al Correlati	on [9]
The theo	represe	cus on suppo	- Kernel ridge		- Empirical risk nels for genera				
Uns Kern	u pervis el K-m	sed learning w eans - spectra	l clustering -		els - shift-invaria iels - deep kerne		- Kernels 1	for generati	ve [9]
		•	-		•			Total Hou	rs 45
Text	book(s):							•
1.	N. Cri 2004.	stianini and J.	Shawe-Tayle	or, 'Kernel M	lethods for Pat	tern Analysi	s', Cambr	idge Univei	sity Press,
2.	B. Sch	olkopf et A. Sr	nola, 'Learnin	g with kernels	s', MIT Press, 2	002.			
Refe	rence(s):							
1.	N. Aro 404, 1		y of reproduci	ng kernels', 1	Transactions of	the America	n Mathem	atical Socie	ty, 68:337-
2.	V. Vap	onik, 'Statistica	Learning The	eory', Wiley, 1	1998.				
-									
3.	C. Ber	g, J.P.R. Chris	stensen et P. F	Ressel, 'Harm	nonic analysis o	n semi-grou	ps', Spring	er, 1994.	

S.No		No. of Hou
1.0	Introduction	
1.1	Basics of Machine Learning	1
1.2	Kernal	1
1.3	Methods	1
1.4	Kernal Methods in Machine Learning	1
1.5	Applications of Kernal Methods	1
1.6	Kernal methods and neural networks	1
1.7	Non linear model	1
1.8	Linear Model	1
1.9	Simple kernel examples	1
2.0	Kernels and Reproducing Kernel Hilbert Spaces (RKHS)	
2.1	Positive definiteness kernal	1
2.2	Reproducing Kernel Hilbert Spaces	1
2.3	Aronszjan theorem	1
2.4	Regularizing with RKHS norms	1
2.4	The kernel trick	1
2.6	String kernels	1
2.0	Shift-invariant kernels	1
2.8	Mercer kernels	1
2.0	Large-scale kernel learning	1
<u>2.9</u> 3.0	Methods of Kernel	1
3.1	Principle Component Analysis	1
3.2		1
<u>3.2</u> 3.3	Support Vector Machine Gaussian Process	1
<u>3.3</u>	Canonical Correlation Analysis	1
3.5	Spectral Clustering	1
3.6	Adaptive Filter	2
3.0	Kernel Perceptron	2
<u>3.7</u> 3.8	Monolithic Kernel	1
<u>3.0</u> 4.0	Supervised learning with kernels	I
4.1	The representer theorem	1
4.2	Kernel ridge regression	1
4.3	Empirical risk minimization	2
4.4	A tiny bit of learning theory	1
4.5	Focus on support vector machines	1
4.6	Kernels for generative models	1
4.7	Kernels for graphs	1
4.8	Kernels on graphs	1
5.0	Unsupervised learning with kernels	A
5.1	Kernel K-means	1
5.2	Spectral clustering Messee learnede	1
5.3	Mercer kernels	1
5.4	Shift-invariant kernels	1
5.5	Kernels for generative models	1
5.6	Multiple kernel learning	2
5.7	Shift-invariant kernels	1
5.8	Deep kernel learning Total	<u> </u>

1.K Senthil Kumar – senthilkumark@ksrct.ac.in

Course Contents and Lecture Schedule

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangassmy College of Technology. Tiruchengode 537 215

	Web Angleting and Development	Category	L	Т	Р	Credit
60 PDS E53	Web Analytics and Development	PC	3	0	0	3

Objectives

- Enable the students to learn basic web concepts
- To apply the features of XML and JDBC Connectivity
- To Write scripts in PERL and JSP
- Know the concept of Java web framework
- Be familiar with Web framework

Prerequisite

Basic Web Concepts, XML and JDBC connectivity, PERL and JSP.web Framework

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Express the features of HTML and Employ various style sheet concepts in HTML	Analyse
CO2	Analysing the concepts of XML and JDBC	Analyse
CO3	Describe the purpose of PERL language and Gain the knowledge of JSP in server side programming	Understand
CO4	Use the concept of Java web framework	Apply
CO5	Critically analyze the various Web frameworks	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	3	3	3	2	2				
CO2	2	3	3	3	2	2				
CO3	2	3	3	3	2	2				
CO4	2	3	3	3	2	2				
CO5	2	3	3	3	2	2				
	3-Strong;2-Medium;1-Some									

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	10	10	10
Understand (Un)	20	20	40
Apply (Ap)	20	30	20
Analyse (An)	10	-	30
Evaluate (Ev)	-	-	-
Create (Cr)	-	-	-

		ŀ	K.S.Rangasa	amy College	of Technolog	y – Autono	mous R	2022		
			60 PD		o Analytics an		nent			
				PDS: M.TE	ECH DATA SO					
Com	a a t a r	ŀ	lours/Week	•	Total has	Credit		/laximumN		
	ester	L	Т	Р	Total hrs	С	CA	ES	Tota	
		3	0	0	45	3	40	60	100)
- Gi rule	aphics s - Style	to HTML Doc e sheet proper	- Style shee ties - Font -	et - Style shee Text - List - C	/IL - List - Crea et basic - Add s Color and back	style to doci ground colo	ument - C r - Box - I	Creating St Display pro	yle sheet operties.	[9]
text Def Res	and tex inition (sult Set	kt formatting e DTD),.XML Sc Prepared Stat	lement, Tabl chema-Introc ement-Conn	le element, M duction-Jdbc nection Modes	claration, Elem lark-up Elemer Architecture-Ty s-Save Point-B	nt and Attrib pes of Drive atch Updati	utes, Doc ers-Stater ons- Call	ument Typ ment- able State	ment	[9]
Sco Exp	pes Jsp ression	Directives:pa	ige ,include,	taglib-Jsp Sc	L-Introduction- cripting Elemer n Actions-Data	its declarati	ves, scrip	tlets,	ects &	[9]
Тур Ехс	its and esOG eptions	NL, the Value	Stack, and Getting Star	Custom Tags ted with Java	nActions and -Form Tags- F Script-Advance	orm Validat	ion and T	ype Conve	ersion	[9]
Intro MVC Djang	oduction Archite go-Djar	ecture in Turbo	ars-Turbo Ge Gears-Crea	ting an Exam	Main Turbo Ge Iple Applicatior ate Component	-The Contro	oller and	View-Intro	duction to	[9]
		••						Tot	al Hours	45
Tex	tbook(s):								
1.	00	t Attiya and sll, Second Ed			ted Computing	g – Fundar	nentals,	Simulation	is and Adv	/anced
2.					anlick ,Struts 2	In Action D	eam tech	press 200	08	
Ref	erence((s):								
1.	Eric La	dd and Jim O'	Donnell, et a	al, "USING H ⁻	FML 4, XML, a	nd JAVA1.2	", PHI pu	blications,	2003.	
					r's Perspective					
2	Adrian		b Kaplan-M	oss, The Defi	nitive Guide to					
					bo Gears, Prer	ntice Hall.20	09			

BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

S.No.	Торіс	No. of Hours
1.0	Introduction Internet Basic	
1.1	Introduction to HTML, List, Creating Table	1
1.2	Linking document, - Frames, Graphics to HTML Doc	2
1.3	Style sheet, Style sheet basic, Add style to document	2
1.4	Creating Style sheet rules,	1
1.5	Style sheet properties, Font, Text, List	1
1.6	Color and background color	1
1.7	Box, Display properties	1
2.0	Xml And Jdbc	
2.1	Features of XML, The XML Declaration	1
2.2	Element Tags, Nesting and structure	1
2.3	XML text and text formatting element	1
2.4	Table element, Mark-up Element and Attributes	1
2.5	Document Type Definition (DTD), XML Schema,	1
2.6	Introduction Jdbc Architecture,	1
2.7	Types of Drivers, Statement-ResultSetPreparedStatement	1
2.8	Connection Modes, SavePoint,Batch Updations.CallableStatement	2
3.0	PERL AND JSP	
3.1	Programming CGI Scripts, PERL, Introduction, JspLifeCycle	2
3.2	Jsp Implicit Objects & ScopesJspDirectives:page	1
3.3	Include,taglib, Jsp Scripting Elements declaratives,	2
3.4	Scriptlets, expressionsJspActions	1
3.5	StandardAction, Custom Actions	1
3.6	DataBaese Connectivity in JSP	2
4.0	STRUTS	
4.1	Struts and Agile Development, Basic Configuration	2
4.2	Actions and Action Support, Results and Result Types	1
4.3	OGNL, the Value Stack and Custom Tags	1
4.4	Form Tags, Form Validation and Type Conversion Exceptions and Logging	2
4.5	Getting Started with JavaScript, Advanced JavaScript	1
4.6	The DOM, and CSSThemes and Templates,	1
4.7	Rich Internet Applications	1
5.0	Turbogears Web Framework	
5.1	Introduction to TurboGears, TurboGears History	1
5.2	Main TurboGears Components, Alternate Components	2
5.3	MVC Architecture in TurboGears, Creating an Example Application	2
5.4	The Controller and View, Introduction to Django	1
5.5	Django History, Django Components, Alternate Components	1
5.6	MVC Architecture in Django	1
5.7	Creating an Example Application	1
	Total	45

Course Designers

1. Mr.S.Arulmurugan - arulmurgans@ksrct.ac.in

BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

60 PDS E54	Next Generation Databases	Category	L	Т	Р	Credit
	Next Generation Databases	PC	3	0	0	3

Objective

- To review the database revolutions and data storage techniques
- To understand NoSQL and document databases
- To understand column databases and In memory databases •
- To understand distributed database patterns and consistency models •
- To study database models, storage and disruptive database technologies

Prerequisite

Basic knowledge of Database Technologies and Data Models

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explore the differences between Relational and NoSQL databases.	Understand
CO2	Analyse NoSQL databases to Store the big data for useful business applications.	Analyse
CO3	Apply the different data models to suit various data representation and storage needs.	Apply
CO4	Design distributed databases.	Apply
CO5	Implement graph data bases like NEO4J and other trending technologies	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	2	2
CO2	2	2	3	3	2	2
CO3	2	2	3	3	2	2
CO4	2	2	3	3	2	2
CO5	2	2	3	3	2	2
		3-Stron	a:2-Medium:1-S	ome		

3-Strong;2-Mealum; 1-Some

	Continuous Asse	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember (Re)	20	20	20	
Understand (Un)	20	20	30	
Apply (Ap)	10	20	30	
Analyse (An)	10	-	20	
Evaluate (Ev)	-	-	-	
Create (Cr)	-	-	-	

		K.S.Rangasa	amy College	of Technolog	y - Autono	mous R202	2	
		60 PD	S E54 – NE	XT GENERATI	ON DATAE	BASES		
			PDS: M.	FECH DATA S	CIENCE			
Samaa	Semester Hours / Week Total hrs Credit Maximum Marks							
Semes	L	Т	P		С	CA	ES	Total
	3	0	0	45	3	40	60	100
	e hours given a							
	for each topic ba					d. The mark	s allotted for qu	estions in
	inations shall no	t depend on t	ne number c	of hours indicate	ed.			
	Revolutions Revolutions:	System Arch	itocturo. Po	lational Datab	aco- Data	basa Dosig	n-Data Storage	[9]
	on Management						II-Dala Slolaye	[9]
	nt Databases				mation iter	ine val.		
	Revolution: CAF	P Theorem- Bi	rth of NoSQ	L- Document D	atabase —	XML Databa	ises JSON	[9]
Documer	t Databases- G	aph Databas	es.					
	and Memory Da							
	Databases: Data							
	Database Archi		D and In-Me	emory Databas	es— In-Me	emory Datab	ases- Berkeley	, [0]
	Data Stack and ed Database Pa							
	d Database Pa		uted Relatio	nal Databases.	. Non-relati	onal Distribu	Itad Databasas.	
	3 - Sharing and							IUI
	ncy MongoDB- H						or consistency	
	dels and Storag							
Data Mod	lels and Storage	: SQL- NoSQ	L APIs- Retu	urn SQL- Advar	nce Databa	ses- Postgre	SQL Riak-	[0]
	- NEO4J - Red				ited-Counte	er revolutiona	aries Oracle HQ	[9]
Other Co	nvergent Databa	ises- Disrupti	ve Database	Technologies.				
							Total Hours	45
Text boo		<u> </u>					0040	
	Harrison, 'Next							
	aham Silberscha	tz,Henry F. K	orth, S.Suda	irsnan, 'Databa	se System	Concepts, N	IcGraw Hill, Sev	entn
Reference	ion, 2017							
	n Issa & Francis	Schieldz 'Co		ument oriented	databases	· LILB 2017		
	Redmond, Jim					· · · ·		
	Sullivan, 'NoSC						.015.	
4. Ada	m Fowler, 'NoSo	L for Dummi	es', John Wi	ley & Sons, Se	cond Editio	n, 2015.		

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tituchengode 637 215

S.No.	Торіс	No.of Hours
1	Database Revolutions	
1.1	Database Revolutions	1
1.2	System Architecture	1
1.3	Relational Database	1
1.4	Database Design	1
1.5	Data Storage	1
1.6	Transaction Management	1
1.7	Data warehouse	1
1.8	Data Mining	1
1.9	Information Retrieval	1
2	Document Databases	
2.1	Big Data Revolution	1
2.2	CAP Theorem	1
2.3	Birth of NoSQL	1
2.4	Document Database	1
2.5	XML Databases	2
2.6	JSON Document Databases	2
2.7	Graph Databases	1
3	Hough Transform	
3.1	Column Databases	1
3.2	Data Warehousing Schemes	1
3.3	Columnar Alternative	1
3.4	Sybase IQ	1
3.5	Store and Vertica	1
3.6	Column Database Architectures- SSD	1
3.7	In-Memory Databases	1
3.8	Berkeley Analytics	1
3.9	Data Stack and Spark	1
4	Column and Memory Databases	
4.1	Distributed Database Patterns	1
4.2	Distributed Relational Databases	1
4.3	Non-relational Distributed Databases	1
4.4	MongoDB - Sharing and Replication	1
4.5	HBase- Cassandra	1
4.6	Consistency Models Types of Consistency	1
4.7	Consistency MongoDB	1
4.8	HBase Consistency	1

R.P-M

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 537 215

4.9	Cassandra Consistency	1
5	Data Models and Storage	
5.1	Data Models and Storage	1
5.2	SQL- NoSQL APIs	1
5.3	Return SQL- Advance Databases	1
5.4	Postgre SQL Riak	1
5.5	CouchDB- NEO4J	1
5.6	Redis- Future Databases	1
5.7	Revolution Revisited & Counter revolutionaries	1
5.8	Oracle HQ and Other Convergent Databases	1
5.9	Disruptive Database Technologies	1
	Total	45

1. Dr.K.Prasanth – prasanth@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2%5

		Category	L	Т	Р	Credit
60 PDS E55	GPU Computing	PE	3	0	0	3

Ojectives

- To understand the GPU Architecture and terminology used in GPU computing
- To learn memory allocation techniques and programming models
- To explore the knowledge on synchronization and memory consistency
- To develop aparallel algorithm for debugging GPU Programs
- To analyse an algorithm to provide parallel solutions to computationally challenging problems.

Prerequisite

Operating System

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe GPU architectures and terminology used in GPU computing	Understand
CO2	Analyse the programming models for memory allocation in GPU Computing	Analyse
CO3	Implement the programs for concept of synchronization and data structure	Apply
CO4	Develop an efficient parallel algorithm for debugging GPU Programs	Apply
CO5	Apply algorithms to provide parallel solutions to computationally challenging problems	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	3	2	2		
CO2	3	3	3	3	2	2		
CO3	3	3	2	3	2	2		
CO4	3	3	3	3	2	2		
CO5	3	3	3	3	2	2		
	3-Strong; 2-Medium; 1-Some							

	Continuous Ass	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember (Re)	20	20	20	
Understand (Un)	20	20	30	
Apply (Ap)	10	20	30	
Analyse (An)	10	-	20	
Evaluate (Ev)	-	-	-	
Create (Cr)	-	-	-	

		К.			Technology –		us R2022		
					-GPU Computi H DATA SCIEN				
			Hours/Week	<u>DO: III.1 EO</u>		Credit	M	Maximum Marks	
Sem	ester	L	T	Р	Total hrs	C	CA	ES	Total
		3	0	0	45	3	40	60	100
Acc hier map	elerator archy, V ping, D	s, Parallel Prog Varps/Wave fro evice propertie	gramming, CU onts, Thread bl s, Simple Prog	DA OpenCL ocks/Workgr grams.	peeds, CPU / / Open ACC, K oups, Streamin	ernels, Laun g multiproces	nch param ssors, 1D/	eters, Thread 2D/3D thread	[9]
Poir Allo diffe	nters, F cation, rent me	Parameter Pas Memory copyi emories	ssing, Arrays ng across de	and dynan vices, Progr	shared, private nic Memory, M rams with matr	Multi-dimens ices, Perfor	ional Arra mance ev	ays, Memory aluation with	([9]
sum Syn	, Redu chroniza	uction. Progra	ms for conc PU and GPU F	urrent Data unctions: De	ocal versus glob a Structures s evice functions, l	uch as W Host function	ork lists, ns, Kernels	Linked-lists s functions	[9]
Asyı Syn	nchronc chroniza	ous processing	j, tasks, Tas	k-dependend	Profile tools, ce, Overlapped - Synchronizatio	l data trans	sfers, De	fault Stream	101
Adv Het	anced	Topics: Dynan			ual Memory, Mu ocessing, Graph				[9]
								Total Hours	s 45
Tex	t book(s):							
1.		ct R Gaster, Le uting with Oper			Perhaad Mistry	and Dana So	chaa, 'Het	erogeneous	
2. David Kirk, Wen-mei Hwu, Morgan Kaufman, 'Programming Massively Parallel Processors: A Hands Approach', 2010 (ISBN: 978-0123814722)								ls-on	
Refe	erence(s):							
1.	2012		-	U U	ning: A Develop				
 Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung & Dan Ginsburg, 'OpenCL Program Guide', Addison-Wesley Professional, 2011. 								-	
3.	Fixstars	s Corporation, 2	2010.		uka & Akihiro As	-	•	0 0	
	Matthev 2011.	w Scarpio, 'Ope	enCL in Action	: How to Acc	celerate Graphic	s and Comp	utations',	Manning Pub	lications,

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tituchengode 637 215

0 N -	Contents and Lecture Schedule	Na af User
<u>S.No.</u>	Topic	No. of Hours
1.0	Introduction: History	
1.1	GPU Architecture	1
1.2	Clock speeds	1
1.3	CPU / GPU comparisons	1
1.4	Heterogeneity, Accelerators	1
1.5	Parallel Programming, CUDA OpenCL / OpenACC	1
1.6	Kernels, Launch parameters	1
1.7	Thread hierarchy, Warps/Wavefronts	1
1.8	Threadblocks/Workgroups, Streaming multiprocessors	1
1.9	1D/2D/3D thread mapping, Device properties, Simple Programs	1
2.0	Memory	
2.1	Memory hierarchy	1
2.2	DRAM / global, local / shared, private / local	1
2.3	textures, Constant Memory	1
2.4	Pointers, Parameter Passing	1
2.5	Arrays and dynamic Memory	1
2.6	Multi-dimensional Arrays, Memory Allocation	1
2.7	Memory copying across devices	1
2.8	Programs with matrices	1
2.9	Performance evaluation with different memories	1
3.0	Synchronization	
3.1	Memory Consistency,	1
3.2	Barriers (local versus global)	1
3.3	Atomics, Memory fence	1
3.4	Prefix sum, Reduction	1
3.5	Programs for concurrent Data Structures such as Worklists, Linked-lists	1
3.6	Synchronization across CPU	1
3.7	GPU Functions: Device functions, Host functions, Kernels functions	1
3.8	Using libraries (such as Thrust)	1
3.9	developing libraries	
4.0	Support	
4.1	Debugging GPU Programs	1
4.2	Profiling, Profile tools	1
4.3	Performance aspects Streams	1
4.4	Asynchronous processing	1
4.5	tasks, Task-dependence	1
4.6	Overlapped data transfers	1
4.7	Default Stream, Synchronization with streams	1
4.8	Events, Event-based- Synchronization	1
4.9	Overlapping data transfer and kernel execution, pitfalls	1
5.0	Design of RTS- General Introduction	
5.1	Dynamic parallelism	1
5.2	Unified Virtual Memory	1
5.3	Multi-GPU processing	1
5.4	Peer access, Heterogeneous processing	1
5.6	Image Processing	1
5.7	Graph algorithms	1
5.8	Simulations	1
5.9	Deep Learning	1
	Total	45

1. Dr.K.Prasanth - prasanth@ksrct.ac.in

CHAIMMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

	Computer Vision	Category	L	Т	Р	Credit
60 PDS E61		PE	3	0	0	3

- To review image processing techniques for computer vision
- To understand shape and region analysis
- To understand Hough Transform and its applications to detect lines, circles, ellipses
- To understand three-dimensional image analysis techniques
- To study some applications of computer vision algorithms

Prerequisite

Basic knowledge of Probability & Statistics, Linear Algebra and Image Processing

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Implement fundamental image processing techniques required for computer vision	Understand
CO2	Perform shape analysis and implement boundary tracking techniques	Analyse
CO3	Apply Hough Transform for line, circle, and ellipse detections	Apply
CO4	Apply 3D vision techniques and implement motion related techniques	Apply
CO5	Develop applications using computer vision techniques	Apply

Mapping with Programme Outcomes

COs	PO	PO	PO	PO	PO	PO
605	1	2	3	4	5	6
CO1	2	2	3	3	2	2
CO2	2	2	3	3	2	2
CO3	2	2	3	3	2	2
CO4	2	2	3	3	2	2
CO5	2	2	3	3	2	2
	•	3-Stron	ng;2-Medium;1-S	ome	•	•

	Continuous Asse	Continuous Assessment Tests (Marks)			
Bloom's Category	1	2	End Sem Examination (Marks)		
Remember (Re)	20	20	20		
Understand (Un)	20	20	30		
Apply (Ap)	10	20	30		
Analyse (An)	10	-	20		
Evaluate (Ev)	-	-	-		
Create (Cr)	-	-	-		

	PDS: M.TECH DATA SCIENCE								
Semester	Hours / Week Total hrs Credit Maximum Marks								
		Total							
	3 0 0 45 3 40 60 • To review image processing techniques for computer vision	100							
Objective(s)	To understand shape and region analysis								
	At the end of the course, the students will be able to								
	CO1: Implement fundamental image processing techniques required for computer vision								
Course	CO2: Perform shape analysis and implement boundary tracking techniques								
Outcomes	CO3: Apply Hough Transform for line, circle, and ellipse detections								
	CO4: Apply 3D vision techniques and implement motion related techniques								
	CO5: Develop applications using computer vision techniques								
	burs given against each topic are of indicative. The faculty has the freedom to decide th								
Review of ima	ssing Foundations age processing techniques – classical filtering operations – thresholding techniques – edge niques – corner and interest point detection – mathematical morphology – texture	[9]							
Binary shape - skeletons ar shape models	Regions analysis – connectedness – object labeling and counting – size filtering – distance functions nd thinning – deformable shape analysis – boundary tracking procedures – active contours – s and shape recognition – centroidal profiles – handling occlusion – boundary length oundary descriptors – chain codes – Fourier descriptors – region descriptors – moments	[9]							
- skeletons ar shape models measures – be Hough Trans Line detection fitting – RANS – speed prob	analysis – connectedness – object labeling and counting – size filtering – distance functions and thinning – deformable shape analysis – boundary tracking procedures – active contours – s and shape recognition – centroidal profiles – handling occlusion – boundary length oundary descriptors – chain codes – Fourier descriptors – region descriptors – moments form – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line GAC for straight line detection – HT based circular object detection – accurate center location lem – ellipse detection – Case study: Human Iris location – hole detection – generalized orm (GHT) – spatial matched filtering – GHT for ellipse detection – object location – GHT for	[9]							
Binary shape - skeletons ar shape models measures – be Hough Trans Line detection itting – RANS - speed probe Hough Transfe reature collation 3D Vision and Methods for 3 rexture – shap - volumetric riangulation –	analysis – connectedness – object labeling and counting – size filtering – distance functions and thinning – deformable shape analysis – boundary tracking procedures – active contours – s and shape recognition – centroidal profiles – handling occlusion – boundary length oundary descriptors – chain codes – Fourier descriptors – region descriptors – moments form a – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line GAC for straight line detection – HT based circular object detection – accurate center location lem – ellipse detection – Case study: Human Iris location – hole detection – generalized orm (GHT) – spatial matched filtering – GHT for ellipse detection – object location – GHT for on								

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

ana	mfer matching, tracking, and occlusion – combining views from multiple cameras – human gait ysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs –	
1003	ting pedestrians Total Hours	45
Тех	t book(s)	
1.	D. L. Baggio et al., 'Mastering Open CV with Practical Computer Vision Projects', Packt Publishing, 20	12
2.	E. R. Davies, 'Computer & Machine Vision', Fourth Edition, Academic Press, 2012.	
Ref	erence(s):	
1.	Jan Erik Solem, 'Programming Computer Vision with Python: Tools and algorithms for analyzing in	nages',
1.	O'Reilly Media, 2012.	
2	Mark Nixon and Alberto S. Aquado, 'Feature Extraction & Image Processing for Computer Vision', 3rd I	Edition,
2.	Academic Press, 2012.	
3.	R. Szeliski, 'Computer Vision: Algorithms and Applications', Springer 2011.	
4.	Simon J. D. Prince, 'Computer Vision: Models, Learning, and Inference', Cambridge University Press, 2	2012.

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2'5

S.No.	Торіс	No.of Hours
1	Image Processing Foundations	
1.1	Review of image processing techniques	1
1.2	Classical Filtering Operations	2
1.3	Thresholding Techniques	1
1.4	Edge Detection Techniques	1
1.5	Corner And Interest Point Detection	1
1.6	Mathematical Morphology	2
1.7	Texture	1
2	Shapes and Regions	
2.1	Binary Shape Analysis – Connectedness	1
2.2	Object Labeling And Counting	1
2.3	Size Filtering – Distance Functions	1
2.4	Skeletons And Thinning – Deformable Shape Analysis	1
2.5	Boundary Tracking Procedures – Active Contours	1
2.6	Shape Models And Shape Recognition – Centroidal Profiles	1
2.7	Handling Occlusion – Boundary Length Measures	1
2.8	Boundary Descriptors – Chain Codes	1
2.9	Fourier Descriptors – Region Descriptors – Moments	1
3	Hough Transform	
3.1	Line Detection – Hough Transform (HT) For Line Detection	1
3.2	Foot-Of-Normal Method – Line Localization – Line Fitting	1
3.3	RANSAC For Straight Line Detection – HT Based Circular Object Detection	1
3.4	Accurate Center Location – Speed Problem	1
3.5	Ellipse Detection – Case Study	1
3.6	Human Iris Location – Hole Detection	1
3.7	Generalized Hough Transform (GHT) – Spatial Matched Filtering	1
3.8	GHT For Ellipse Detection	1
3.9	Object Location – GHT For Feature Collation	1
4	3D Vision and Motion	
4.1	Methods For 3D Vision – Projection Schemes	1
4.2	Shape From Shading – Photometric Stereo	1
4.3	Shape From Texture – Shape From Focus	1
4.4	Active Range Finding – Surface Representations	1
4.5	Point-Based Representation – Volumetric Representations	1
4.6	3D Object Recognition – 3D Reconstruction	1
4.7	Introduction To Motion – Triangulation	1
4.8	Bundle Adjustment – Translational Alignment – Parametric Motion	1
4.9	Spline-Based Motion – Optical Flow – Layered Motion	1
5	Applications	
5.1	Application: Photo Album – Face Detection	1
5.2	Face Recognition – Eigen Faces	1
5.3	Active Appearance And 3d Shape Models Of Faces Application	1

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

P.P-M

CHAIRMAN BOARD (): STUDIES Department of Information Tech K.S.Rangasamy College of Tech Tiruchengode 637 245

M.Tech(Data Science)-Degree Programme 2024-2025

5.4	Surveillance – Foreground-Background Separation	1
5.5	Particle Filters – Chamfer Matching, Tracking, And Occlusion	2
5.6	Combining Views From Multiple Cameras	1
5.7	Human Gait Analysis Application	1
5.8	In-Vehicle Vision System: Locating Roadway – Road Markings	1
5.9	Identifying Road Signs – Locating Pedestrians	1
	Total	45

Course Designers

1. Dr.K.Prasanth – prasanth@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2/5

60 PDS E62	Theoretical and Computational	Category	L	Т	Р	Credit
00 PD3 E02	Neuroscience	PC	3	0	0	3

- To familiarize fundamentals of neuroscience
- To widen the knowledge about neural encoding and decoding process
- To learn the concept of neuro electronics and network models
- To develop the skills in various learning techniques of neuroscience
- To understand the model of computational neuroscience and neural networks

Prerequisite

Basic knowledge of Neural Network and Machine Learning

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Comprehend about neuroscience and nervous system	Understand
CO2	Apply appropriate encoding and decoding techniques for neural system	Apply
CO3	Classify the electrical properties of neuron with the aid of necessary network models	Analyse
CO4	Differentiate a mixture of learning techniques	Apply
CO5	Recognize the use of computational neuroscience with neural network concept	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	2	-
CO2	2	2	3	3	2	-
CO3	2	2	3	3	2	-
CO4	2	2	3	3	2	-
CO5	2	2	3	3	2	-
	•	3-Strong	;2-Medium;	I-Some	•	•

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	20	20	20
Understand (Un)	20	20	30
Apply (Ap)	20	10	30
Analyze (An)	-	10	20
Evaluate(Ev)	-	-	-
Create (Cr)	-	-	-

		K.S.Ranga	samy Colle	ege of Techno	ology – Au	tonomous	R2022		
		-		etical and Cor					
				M.TECH DAT	•				
		Hours / Wee			Credit		Maximum	Marks	
Semeste	er L	T	P	Total hrs	C	CA	ES	Tota	al
	3	0	0	45	3	40	60	100	
for each t	opic based or	n importanc	e and dept	ndicative. The h of coverage f hours indicate	required.				
Introductio	Senses, The A	atures and (Nervous Syste /isual System,					[9]
Neural En Firing Rate Neural Co Reverse-O Retina ar	coding and D es and Spike S ode, Reverse Correlation Met	Statistics - I Correlation hods: Simp structing V	and Visual le Cells, St 1 Receptiv	, Spike Trains Receptive Fic atic Nonlineari e Fields, Ne n Decoding	elds - Intro ties: Com	oduction, Esplex Cells, I	stimating Firi Receptive Fie	ng Rates, elds in the	[9]
Neuro ele and-Fire Synapses	Models, Volta on Integrate-a	duction, Ele age-Depend and-Fire Ne	ent Condu urons, Con	perties of Neur uctances, Moo iductances and ion, Multi-com	deling Ch d Morphole	annels, Sy ogy - Level	naptic Cond s of Neuron	luctances,	[9]
Adaptatio Plasticity Learning, Action Ch	n and Learnin and Learning Classical Cond	1g - Introduct ditioning and ial Action C	tion, Synap d Reinforce Choice, Rep	otic Plasticity ment Learning presentational	Rules, Ur - Introduc	supervised tion, Classi	Learning, S cal Condition	ing, Static	[9]
Computat Introductic Huxley m	ional Neuroso n, Mathematic odel, Biophysi	cience and cal Prelimina cal models	Neural net aries, Orga of Single	works nization of ne neuron, Simpl Back propagat	ified neuro	on models,	Introduction		[9]
Total Hou		· · · · · · · · · · · · · · · · · · ·	. ,		U				45
Text book									•
				and Mathema ISBN 0-262-04		ling of Neura	al Systems', t	by Peter Da	yan
978-	0-262038256	ourse in Co	mputational	Neuroscience	e', by P. M	illerm MIT F	Press (2018),	1st edition.	ISBN
Reference									
editi	on. ISBN 978-0	0-387-87707	7- 5	nce', by G. B.			·	0	
	amical System MIT Press, 20			e Geometry of 8	Excitabilit	y and Burst	ting', by Euge	ene M. Izhik	evich.
				computaional E	Brain,MIT F	Press			
	stof Koch, Biop		-	information pr			urons, Oxford	University	Press,

CHAIRMAN BOARD OF STUDIES Department of information Tec K.S.Rangasamy College of Tec Tiruchengode 637 2% ge of Tech 637 215

S.No.	Торіс	No.of Hour
1	Fundamentals of Neuroscience	
1.1	Introduction	1
1.2	General Features and Cells of the Nervous System	1
1.3	Neural Signaling	1
1.4	Synaptic Transmission	1
1.5	Chemical Senses	1
1.6	The Auditory System	1
1.7	The Visual System	1
1.8	Cognition and Memory	1
1.9	Development of the Nervous System	1
2	Neural Encoding and Decoding	
2.1	Firing Rates and Spike Statistics - Introduction	1
2.2	Spike Trains and Firing Rates, Spike-Train Statistics	1
2.3	The Neural Code	1
2.4	Reverse Correlation and Visual Receptive Fields - Introduction	1
2.5	Estimating Firing Rates, Reverse-Correlation Methods: Simple Cells, Static Nonlinearities: Complex Cells	1
2.6	Receptive Fields in the Retina and LGN	1
2.7	Constructing V1 Receptive Fields, Neural Decoding - Encoding and Decoding	1
2.8	Discrimination, Population Decoding	1
2.9	Spike-Train Decoding	1
3	Neurons and Neural Circuits	
3.1	Neuroelectronics - Introduction, Electrical Properties of Neurons	1
3.2	Single-Compartment Models	1
3.3	Integrate-and-Fire Models, Voltage-Dependent Conductances	1
3.4	Modeling Channels, Synaptic Conductances	1
3.5	Synapses on Integrate-and-Fire Neurons	1
3.6	Conductances and Morphology - Levels of Neuron Modeling	1
3.7	Conductance - Based Models	1
3.8	The Cable Equation	1
3.9	Multi-compartment Models, Network Models	1
4	Adaptation and Learning	
4.1	Plasticity and Learning - Introduction	1
4.2	Synaptic Plasticity Rules	1
4.3	Unsupervised Learning, Supervised Learning	1
4.4	Classical Conditioning and Reinforcement Learning - Introduction	1
4.5	Classical Conditioning	1
4.6	Static Action Choice, Sequential Action Choice	1
4.7	Representational Learning - Introduction	1
4.8	Density Estimation	1
4.9	Causal Models for Density Estimation.	1
5	Computational Neuroscience and Neural networks	

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

R.P-M

CHAIRMAN BOARD (]t STUDIES Department of Information Techn K.S.Rangasamy College of Tech Tiruchengode 637 2*5

5.2	Organization of nervous system and Neuroanatomy	1
5.3	Hodgkin Huxley model	1
5.4	Biophysical models of Single neuron	1
5.5	Simplified neuron models	1
5.6	Introduction to Neural networks	1
5.7	basic neurons, multilayer perceptron	1
5.8	Backpropagation algorithm	1
5.9	Hopfield network	1
	Total	45

Course Designers

Dr.C.Nallusamy (nallusamyc@ksrct.ac.in)

CHAIRMAN BOARD OF STUDIES Department of Information Technology. K.S.Rangasamy College of Technology.

60 PDS E63	Fog Computing	Category	L	Т	Ρ	Credit
00 PD3 E03		PC	3	0	0	3

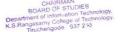
- To learn the basic concepts of fog computing
- To familiarize the management of Network Slices in 5G, Fog, Edge, and Clouds
- To provide the requirements of fog computing when applied to IoT
- To develop the application of fog computing in health monitoring
- To implement software defined networking application

Prerequisite

Basic knowledge of Data Science, Cloud Computing IoT

Course Outcomes

On the successful completion of the course, students will be able to


CO1	Explore the fundamentals of fog computing	Understand
CO2	Explain the management of Network Slices in 5G, Fog, Edge, and Clouds	Analyse
CO3	Analyse fog computing requirements in IoT	Analyse
CO4	Utilize fog computing in health monitoring applications	Apply
CO5	Implement software defined networking application in fog computing	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	2	3	1	1			
CO2	2	2	2	3	1	1			
CO3	2	2	2	3	1	1			
CO4	2	2	2	3	1	1			
CO5	2	2	2	3	1	1			
	3-Strong;2-Medium;1-Some								

	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember (Re)	20	10	20
Understand (Un)	20	20	30
Apply (Ap)	10	10	20
Analyse (An)	10	20	30
Evaluate (Ev)	00	00	00
Create (Cr)	00	00	00

		K.S.Rangasa	amy College	of Technolog	y – Autono	omous R20	22	
				63 – FOG CON				
			PDS: M.	FECH DATA S	CIENCE			
O a ma a star		Hours / Wee	ek	Tatalhas	Credit		Maximum Marks	
Semester	L	Т	Р	Total hrs	С	CA	ES	Total
	3	0	0	60	3	40	60	100
Architecture: healthcare ar standards, Technologies	ting, Charac Communicat nd vehicles. F WPAN, Sho	cteristics, Ap ion and Netw Fog Compution ort-Range T	vork Model, I ng Communi echnologies	Programming M cation Technolo , LPWAN an	odels, Fog ogies: Intro d other	Architecture duction ,IEE medium a	Fog Computing e for smart cities, EE 802.11,4G,5G nd Long-Range	[9]
Introduction, Slicing Mana Computing M Edge Cloud Analytics, Da	Background, gement in Ed liddleware, C Architectures ta Analytics in	Network Sli Ige and Fog, Clusters for L S. Fog Comp n the Fog, Pl	icing in 5G, Middleware ightweight E puting Realiz rototypes and	for Fog and Ed dge Clouds, lo ⁻ ation for Big D d Evaluation.	g in Softwa ge Compu T Integratio	re-Defined ting, Need f on, Security	Clouds, Network or Fog and Edge Management for tion to Big Data	[9]
Architecture, virtualization,	nteroperability Data Mana security and	y, Fog-loT a gement, filte I privacy issu	architectural ering, Event ues. Integrat	model, Challer Management, ing IoT, Fog, a	Device N nd Cloud II	/lanagemen nfrastructure	odel via TCP/IP t, Cloudification, es: Methodology, C2F2T Literature	[9]
in Smart E-H Smart Trans	re of a Healt ealth Gatewa portation App or Smart Tra	th Monitoring ays, Discussi plications: In	IOT Based ion of Conne troduction ,	cted Compone Data-Driven Inf	nts. Fog Co telligent Tr	omputing M ansportatior	mputing Services odel for Evolving n Systems, Fog nts Management	[9]
Software De Open Flow P Privacy issue	fined Networ rotocol, Oper s: Trust and Aachine Lear	n Flow Switcl privacy issu	h, SDN in Fo es in IoT Ne	twork, web Ser	lome Netw mantics an	d trust Man	DN. Security and agement for Fog gy Systems over	[9]
	0						Total Hours	45
Text book(s)								
^{1.} 2020 ₂ Rajkun	nar Buyya, S					-	actice", John Wile es and Paradigm	-
publica	tion, 2019,							
				hatterjee,"Sens	ors, Cloud,	, and Fog: T	he Enabling Tech	nologies
	rin <mark>ivasa Par</mark>							
							Digital Era ",IGI Gl	obal,2018
^{3.} Conce	omar, Avita K	atal, Sushee orks, and App	ela Dahiya, N plications ", T	iharika Singh, T aylor & Francis	anupriya C		Digital Era ",IGI Gl 'Fog Computing	obal,2018

CHAIRMAN BOARD OF STUDIES Department of information Techn K.S.Rangasamy College of Tech Tiruchengode 637 2 %

S.No.	Торіс	No.of Hours
1	Introduction to Fog Computing	
1.1	Fog Computing, Characteristics, Application Scenarios, Issues and challenges	1
1.2	Fog Computing Architecture	1
1.3	Communication and Network Model, Programming Models	1
1.4	Fog Architecture for smart cities, healthcare and vehicles	1
1.5	Fog Computing Communication Technologies - IEEE 802.11	1
1.6	4G,5G standards	1
1.7	WPAN, Short-Range Technologies	1
1.8	LPWAN	1
1.9	Medium and Long-Range Technologies	1
2	Management and Orchestration of Network Slices in 5G,Fog, Edge, and Clouds, ,.	
2.1	Introduction, Background, Network Slicing in 5G	1
2.2	Network Slicing in Software	1
2.3	Network Slicing Management in Edge and Fog	1
2.4	Middleware for Fog and Edge Computing	1
2.5	Middleware, Clusters for Lightweight Edge Clouds, IoT Integration	1
2.6	Management for Edge Cloud Architectures	1
2.7	Fog Computing Realization for Big Data Analytics	1
2.8	Data Analytics in the Fog	1
2.9	Prototypes and Evaluation	1
3	Fog computing requirements when applied to IoT	
3.1	Scalability, Interoperability, Fog- IoT architectural model	1
3.2	Challenges on IoT Stack Model via TCP/IP	1
3.3	Architecture, Data Management, filtering Event Management	2
3.4	Device Management, Cloudification, Virtualization	1
3.5	Security and privacy issues	1
3.6	Integrating IoT, Fog, Cloud Infrastructures: Methodology, Integrated C2F2T	2
3.7	Literature by Modeling Technique by Use-Case Scenarios	1
3.8	Integrated C2F2T Literature by Metrics	1
4	Exploiting Fog Computing in Health Monitoring	
4.1	An Architecture of a Health Monitoring IoT Based System with Fog Computing	1
4.2	Fog Computing Services in Smart E-Health Gateways	1
4.3	Discussion of Connected Components	1
4.4	Fog Computing Model for Evolving Smart Transportation	1
4.5	Data-Driven Intelligent Transportation Systems	1
4.6	Fog Computing for Smart Transportation	2
4.7	Applications Case Study: Intelligent Traffic Lights Management (ITLM) System	2
5	Software Defined Networking and application in Fog Computing	
5.1	Open Flow Protocol, Open Flow Switch	1
5.2	SDN in Fog Computing, Home Network using SDN	2
5.3	Trust and privacy issues in IoT Network	1
5.4	Web Semantics and trust Management for Fog Computing	1

Rev. No.3/w.e.f. 22.07.2024 Approved Passed in BoS Meeting held on 24/05/2024in Academic Council Meeting held on 25/05/2024

P.P-M

CHAIRMAN BOARD (): STUDIES Department of Information Tech K.S.Rangasamy College of Tech Tiruchengode 637 245

5.5	Machine Learning based security in Fog Computing	2
5.6	Cyber- Physical Energy Systems over Fog Computing	
Practic	e	
P.1	Understand the tools and libraries in iFogSim	6
P.2	Implemention of a topology in iFogSim	4
P.3	Testing of services and scenarios in a controllable environment of iFogSim	5
	Total	45 + 15 = 60

Course Designers

Dr.J.Nithya - nithyaj@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 2/5

		Category	L	Т	Р	Credit
60 PDS E64	Healthcare Data Analytics	PE	3	0	0	3

Understand the health data formats, health care policy and standards

- · Learn the significance and need of data analysis and data visualization
- Understand the health data management frameworks
- Learn the use of machine learning and deep learning algorithms in healthcare
- Apply healthcare analytics for critical care applications

Prerequisite

Machine Learning, Deep Learning

Course	Outcomes	
CO1	Understand machine learning and deep learning algorithms for health data analysis	Understand
CO2	Remember the data management techniques for healthcare data	Remember
CO3	Analyse the need of healthcare data analysis in e-healthcare, telemedicine and other critic care applications	Analyse
CO4	Design health data analytics for real time applications	Apply
CO5	Design emergency care system using health data analysis	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	1
CO2	3	3	3	3	2	1
CO3	3	3	2	3	2	1
CO4	3	3	3	3	2	1
CO5	3	2	2	3	2	1
		3	S-Strong;2-Med	dium;1-Some		

	Continuous Asse	End Sem	
Bloom's Category	1	2	Examination (Marks)
Remember (Re)	30	00	10
Understand (Un)	30	00	60
Apply (Ap)	00	30	30
Analyse (An)	00	30	00
Evaluate (Ev)	00	00	00
Create (Cr)	00	00	00

		К.	S.Rangasamy	/ College of	Technology –	Autonomou	IS R2022		
					Ithcare Data A				
			Hours/Week	DO: M.TEO		Credit	M	laximum Mai	ks
Seme	ester	L	T	Р	Total hrs	C	CA	Total	
		3	0	0	45	3	40	ES 60	100
Intro	oductio	n To Healthca	re Analysis					1 1	
Ove	rview –	History of Hea	Ithcare Analys	is Parameter	rs on medical ca	are systems	– Health (Care Policy -	
Stan	dardize	ed Code Sets	- Data Form	ats – Mach	ine Learning F	oundations:	Tree Lik	e reasoning	[9]
Prob	abilistic	c reasoning and	d Bayes Theor	em, Weighte	d sum approac	h.			
Hea	th Car	e Managemen	t						
IOT	– Sma	rt Sensors – I	Migration of H	lealthcare R	elational datab	ase to NoSo	QL Cloud	Database -	. [9]
		• • •		• •	tem – Semantio		-	-	
	Ŭ			I Prediction I	Models – Visual	Analytics for	r Healthca	are.	
		And Deep Lea	•						
		•	•		I – RNN for Se	•		•	101
•		•	0 0	•	Data Mining for	Clinical Data	a – Mobile	Imaging and	
		Clinical Decisio	11 ,	stem.					
		earning In Hea							
					ical Data – Trea		Prediction	of Disease -	· [9]
					- Personalized I	Medicine.			
		telligence And		• • •					
	-	•	•••		mbulance Syste	-		•	[9]
Con	ditions	(HAC) program	- Healthcare	and Emergin	ng Technologies	s – ECG Data	a Analysis		
	,	<u>, </u>						Total Hour	s 45
	book(s	*			<u> </u>				
1.			00		Care data Anal				
2.		an Dey, Amira gement', First E			ng, Chintan Bha)18.	ati, 'Health C	Care Data	Analysis an	d
Refe	erence(s):							
1.	Vikas	Kumar, 'Health	Care Analysis	Made Simp	le', Packt Publis	shing, 2018			
2.	Spring	jer, 2020	0		omaya , Baki,	0			
3.	First E	dition, Wiley, 2	016	2	om Data to Kno	U		·	
4.	Nilanja		Ashour, Simo		ong, Chintan Bh)18.	atl, 'Health	Care Data	a Analysis a	nd

S.No.	Торіс	No. of Hours
1.0	Introduction To Healthcare Analysis	
1.1	Overview	1
1.2	History of Healthcare Analysis Parameters on medical care systems	1
1.3	Health Care Policy	1
1.4	Standardized Code Sets	1
1.5	Data Formats	1
1.6	Machine Learning Foundations:	1
1.7	Tree Like reasoning	1
1.8	Probabilistic reasoning and Bayes Theorem,	1
1.9	Weighted sum approach.	1
2.0	Health Care Management	
2.1	IOT	1
2.2	Smart Sensors	1
2.3	Migration of Healthcare Relational database to NoSQL Cloud Database	1
2.4	Decision Support System	1
2.5	Matrix block Cipher System	1
2.6	Semantic Framework Analysis	1
2.7	Histogram bin Shifting and Rc6 Encryption	1
2.8	Clinical Prediction Models	1
2.9	Visual Analytics for Healthcare	1
3.0	Healthcare And Deep Learning	
3.1	Introduction on Deep Learning	1
3.2	DFF network CNN	1
3.3	RNN for Sequences	1
3.4	Biomedical Image and Signal Analysis	1
3.5	Natural Language Processing-	1
3.6	Data Mining for Clinical Data	2
3.7	Mobile Imaging and Analytics	1
3.8	Clinical Decision Support System	1
4.0	Machine Learning In Health Care	
4.1	Introduction	1
4.2	Medical Imaging and Diagnosis	1
4.3	Medical Data	2
4.4	Treatment and Prediction of Disease	1
4.5	Smart Health Records	1
	Clinical Trial	1
4.7	Research	1
4.8	Personalized Medicine	1
5.0	Artificial Intelligence And Machine Learning Applications	A
5.1	Predicting Mortality for cardiology Practice	1
5.2	Smart Ambulance System using IOT	2
5.3	Hospital Acquired Conditions (HAC) program	2
5.4	Healthcare and Emerging Technologies	2
5.5	ECG Data Analysis	2
	Designers	45

1.Mr.P.Dineshkumar – p.dineshkumar@ksrct.ac.in

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tiruchengode 637 215

		Category	L	Т	Р	Credit
60 PDS E65	Real Time Systems	PE	3	0	0	3

- Define various Real Time systems Application
- Discuss a broad understanding of the technologies and applications for the emerging and exciting domain of real-time systems
- Demonstrate the in-depth hands-on experience in designing and developing a real operational system.
- Differentiate and distinguish architectural design of a real-time system
- Compare different Task scheduling, resource management, real-time operating systems and fault tolerant methods of Real-Time Systems.

Prerequisite

Basic knowledge of Operating System.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the fundamentals of Real time systems and its classifications.	Remember
CO2	Understand the concepts of computer control and the suitable computer hardware requirements for real-time applications.	Understand
CO3	Describe the operating system concepts and techniques required for real time systems.	Apply
CO4	Develop the software algorithms using suitable languages to meet Real time applications.	Apply
CO5	Apply suitable methodologies to design and develop Real-Time Systems.	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	3	3	2	3			
CO2	3	3	3	3	2	3			
CO3	3	3	2	3	2	3			
CO4	3	3	3	3	2	3			
CO5	3	2	2	3	2	3			
			01 0.14						

3-Strong;2-Medium;1-Some

Assessment Pattern

	Continuous Asse	End Sem		
Bloom's Category	1	2	Examination (Marks)	
Remember (Re)	30	20	30	
Understand (Un)	30	20	30	
Apply (Ap)	-	20	20	
Analyse (An)	-	-	20	
Evaluate (Ev)	-	-	-	
Create (Cr)	-	-	-	

CHAIRMAN BOARD 3F STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tinichengode 637 2*5

	143			Technology –				
				Real Time Syst				
		lours/Week				Ν.		rko
Semester		T	Р	Total hrs	Credit C	CA	laximum Ma ES	Total
	3	0	0	45	3	40	60	100
Historical I	on to Real-Time background, Elei ems, Time Col	ments of a Co						al-
ntroductio	Hardware Req n, General Purp s, Process-Rela	ose Compute	r, Single Chip	Microcompute				
ntroductio Cutlass, M	s for Real-Time n, Syntax Layou lodularity and V Handling, and L	ut and Reada ariables, Con	bility, Declara	lodular Prograr	ns, Data typ	es, Contr	ol Structure	s, го т
	Support, Overvi				and Device	Handling,	Concurrenc	;y, [3]
Real-Time Operating Introductio Managem		ew of Real-Ti Multi-Taskin nd Real-Time	me Language g OS, Sch e Clock Interr	es. neduling Strate upt Handler, Me	egies, Prio emory Mana	rity Struc	ctures, Ta	sk
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General I n, Specificati d/Background S	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig	egies, Prio emory Mana Exclusion. n. Single	rity Struc gement, C -Program	ctures, Tas Code Sharin Approac	sk g, [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General I n, Specificati d/Background S	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig	egies, Prio emory Mana Exclusion. n. Single	rity Struc gement, C -Program	ctures, Tas Code Sharin Approac	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General I n, Specificati d/Background S ai Method.	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig	egies, Prio emory Mana Exclusion. n. Single	rity Struc gement, C -Program	ctures, Ta Code Sharin Approac lethod, Hate	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General I n, Specificati d/Background S ai Method.	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin duction, Yow-	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig don Methodolog	egies, Prio emory Mana ixclusion. n. Single gy, Ward and	rity Struc gement, C -Program d Mellor M	ctures, Ta Code Sharin Approac lethod, Hate Total Hou	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha Textbook 1. Real	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General I n, Specificati d/Background S ai Method. s):	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc Control, Stua	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin duction, Yow-	es. neduling Stratuupt Handler, Me cation, Mutual E ninary Desig don Methodolog	egies, Prio emory Mana xclusion. n. Single gy, Ward and	rity Struc gement, C -Program d Mellor M	ctures, Ta Code Sharin Approac lethod, Hate Total Hou	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha Textbook(1. Real 2. Real	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General In n, Specificati d/Background S ai Method. s): -Time Computer Time Systems –	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc Control, Stua	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin duction, Yow-	es. neduling Stratuupt Handler, Me cation, Mutual E ninary Desig don Methodolog	egies, Prio emory Mana xclusion. n. Single gy, Ward and	rity Struc gement, C -Program d Mellor M	ctures, Ta Code Sharin Approac lethod, Hate Total Hou	sk g, [9] h, sly [9]
Real-Time Operating ntroductio Managem Resource Design of ntroductio Foregroun and Pirbha Textbook(1. Real 2. Real Reference	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General In n, Specificati d/Background S ai Method. s): -Time Computer Time Systems –	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc Control, Stua - Jane W. S. L	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin duction, Yow- urt Bennet, Se Liu, Pearson I	es. neduling Strat. upt Handler, Me cation, Mutual E ninary Desig don Methodolog econd Edition. P Education Publi	egies, Prio emory Mana ixclusion. n. Single gy, Ward and gy, Ward and rearson Educ	rity Struc gement, C -Program d Mellor M cation. 200	ctures, Ta Code Sharin Approac lethod, Hate Total Hou 08.	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha Textbook 1. Real Reference 1. 'Rea	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General In n, Specificati d/Background Sy ai Method. s): -Time Computer Time Systems – e(s):	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc Control, Stua Jane W. S. L C.M. Krishna	me Language g OS, Sch e Clock Interr nd Communie ent, Prelin duction, Yow- urt Bennet, Se Liu, Pearson I a, Kang G Sh	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig don Methodolog econd Edition. P Education Publi in, McGraw-Hill	egies, Prio emory Mana Exclusion. In. Single gy, Ward and rearson Educ cation	rity Struc gement, C -Program d Mellor M cation. 200	ctures, Ta Code Sharin Approac Tethod, Hate Total Hou 08.	sk g, [9] h, sly [9]
Real-Time Operating Introductio Managem Resource Design of Introductio Foregroun and Pirbha Textbook(1. Real 2. Real Reference 1. 'Rea 2. Real	Support, Overvi Systems n, Real-Time ent, Scheduler a Control, Task Co RTS- General In n, Specificati d/Background S ai Method. S): -Time Computer Time Systems – (s): -Time Systems',	ew of Real-Ti Multi-Taskin nd Real-Time o-Operation a ntroduction on Docwn ystem - Introc Control, Stua Jane W. S. L C.M. Krishna Design and Ar	me Language g OS, Sch e Clock Interr nd Communio ent, Prelin duction, Yow- int Bennet, Se iu, Pearson I a, Kang G Sh nalysis, Phillip	es. neduling Strate upt Handler, Me cation, Mutual E ninary Desig don Methodolog econd Edition. P Education Public in, McGraw-Hill o. A. Laplante, s	egies, Prio emory Mana Exclusion. In. Single gy, Ward and Pearson Educ cation Internationa Recond editio	rity Struc gement, C -Program d Mellor M cation. 200 I Editions, n, PHI, 20	ctures, Ta Code Sharin Approac Tethod, Hate Total Hou 08.	sk g, [9] h, sly [9]

S.No.	Торіс	No. of Hours
1.0	Introduction to Real-Time Systems	
1.1	Historical background	1
1.2	Elements of a Computer Control System	1
1.3	RTS- Definition	1
1.4	Classification of Real-time Systems	1
1.5	Time Constraints	1
1.6	Classification of Programs	1
1.7	Sequence Control	1
1.8	Loop Control	1
1.9	Supervisory Control	1
2.0	Computer Hardware Requirements for Real-Time Applications	
2.1	Introduction	1
2.2	General Purpose Computer	1
2.3	Single Chip Microcomputers	1
2.4	Microcontrollers	1
2.5	Specialized Processors	1
2.6	Process-Related Interfaces	1
2.7	Data Transfer Techniques	1
2.8	Communications	1
2.9	Standard Interface	1
3.0	Languages for Real-Time Applications	
3.1	Introduction, Syntax Layout and Readability	1
3.2	Declaration and Initialization of Variables and Constants	1
3.3	Cutlass, Modularity and Variables	1
3.4	Compilation of Modular Programs	1
3.5	Data types, Control Structures, Exception Handling	1
3.6	Low-level facilities, Co-routines, Interrupts and Device Handling, Concurrency	2
3.7	Real-Time Support	1
3.8	Overview of Real-Time Languages	1
4.0	Operating Systems	
4.1	Introduction, Real-Time Multi-Tasking OS	1
4.2	Scheduling Strategies, Priority Structures	1
4.3	Task Management	2
4.4	Scheduler and Real-Time Clock Interrupt Handler	1
4.5	Memory Management	1
4.6	Code Sharing, Resource Control	1
4.7	Task Co-Operation and Communication	1
4.8	Mutual Exclusion	1
5.0	Design of RTS- General Introduction	
5.1	Introduction, Specification Document	1
5.2	Preliminary Design	1
5.3	Single-Program Approach	2
5.4	Foreground/Background System	1
5.5	Yow-don Methodology	1
5.6	Ward and Mellor Method	2
5.7	Hately and Pirbhai Method.	1
	Total	45

Course Designers

1. K Senthil Kumar - senthilkumark@ksrct.ac.in

	K.	S.Rangasam		f Technolog CH DATA S		nous R2022		
		60	_	Project Wor				
Semester	Hours/Week			Total	Credit	Ма		
Semester	L	Т	Р	Hours	С	CA	ES	Total
	0	0	12	60	6	100	-	100
Objective(s)	the te • To pro journa their b	chnical proce ovide an exp als and confe peginning sta	edures in the osure to the rence proce ge for their f	eir project wo students to eedings relev inal presenta	rk. refer, read a vant to their ation.	and review th	te them to carr ne research art and placing th	icles,
Course Outcomes	 Surve and c Use d tools. Desig Condu- results 	ontact resour ifferent expe n and develo	at literature s ree persons rimental tech p an experir existing set u zing them.	such as book for the selec nniques/diffe mental set up ips/equipme	s, national/ir ted topic of r rent softwar b/ equipmen nt and draw	research. e/computatio t/testing. logical concl	refereed journa onal/analytical lusions from the	

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.E/M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report.

The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

Assessment Pattern Internal Assessment: 100 Marks

Review I (R1)			Review II (R2)		Review III (R3)			Total (R1+R2+R3)	Internal
	Topic Identification & Justification	Work Plan	Approach	Conclusion	Demo- Existing System	Presentation	Report	Total	
10	10	10	20	20	10	10	10	100	100

CHAIRMAN BOARD ÖF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Tinuchengode 537 215

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE-637215

(An Autonomous Institution affiliated to Anna University)

M. Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted in 2024 - 2025)

FOURTH SEMESTER

S.No.	Course Code	Name of the Course	Duration of Internal Exam	Weightage of Marks			Minimum Marks for Pass in End Semester Exam		
				Continuous Assessment *	End Semest er Exam **	Max. Marks	End Semester Exam	Total	
PRCTICAL									
1.	60 PDS 4P1	Project Work Phase - II	2	60	40	100	45	100	

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for theory End Semester Examination and 40 marks for project work End Semester Examination.

CHAIRMAN BOARD OF STUDIES Department of information Technology. K.S.Rangasamy College of Technology. Timichengode 637 215

K.S.Rangasamy College of Technology – Autonomous R2022 PDS: M.TECH DATA SCIENCE										
60 PDS 4P1 – Project Work Phase - II										
Semester		Hours/Week		Total	Credit	Maximum Marks				
	L	Т	Р	Hours	С	CA	CA ES			
	0	0	24	60	12	60	40	100		
Objective(s)	• This enables and strengthens the students to carry out the project on their own and to implement their innovative ideas to forefront the risk issues and to retrieve the hazards by adopting suitable assessment methodologies and staring it to global.									
Course Outcomes	 At the end of the course, the students will be able to Develop attitude of lifelong learning and will develop interpersonal skills to deal with people working in diversified field will. Write technical reports and research papers to publish at national and international level. Develop strong communication skills to defend their work in front of technically qualified audience. 									
The Project W	ork will start i	n semester l	II and should	d preferably b	pe a problem	with researc	ch potential and	should		
involve scienti	fic research,	design, ger	eration/colle	ction and ar	nalysis of da	ta, determin	ing solution and	d must		
preferably brin	g out the indi	ividual contri	bution. Semi	nar should b	e based on t	he area in w	hich the candida	te has		
undertaken th	e dissertatio	n work as	per the con	nmon instrue	ctions for al	l branches	of M.E/M. Tech	n. The		
examination shall consist of the preparation of report consisting of a detailed problem statement and a literature										
review. The pr	eliminary resu	ults (if availat	ole) of the pro	oblem may al	so be discus	sed in the re	port.			
The work has	to be presente	ed in front of	the examine	rs panel set l	by Head and	PG coordina	tor. The candida	te has		

to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

